Protein model accuracy estimation empowered by deep learning and inter-residue distance prediction in CASP14
Abstract The inter-residue contact prediction and deep learning showed the promise to improve the estimation of protein model accuracy (EMA) in the 13th Critical Assessment of Protein Structure Prediction (CASP13). To further leverage the improved inter-residue distance predictions to enhance EMA, d...
Enregistré dans:
Auteurs principaux: | Xiao Chen, Jian Liu, Zhiye Guo, Tianqi Wu, Jie Hou, Jianlin Cheng |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7cc61f3613084b268a5cf7d582f47d0e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MULTICOM2 open-source protein structure prediction system powered by deep learning and distance prediction
par: Tianqi Wu, et autres
Publié: (2021) -
An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12
par: Chen Keasar, et autres
Publié: (2018) -
Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
par: Aashish Jain, et autres
Publié: (2021) -
Correction: PRMT5 regulates cell pyroptosis by silencing CASP1 in multiple myeloma
par: Tian Xia, et autres
Publié: (2021) -
Improved protein structure refinement guided by deep learning based accuracy estimation
par: Naozumi Hiranuma, et autres
Publié: (2021)