Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data

Global crop mapping and monitoring requires high-resolution spatio-temporal information. In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and high spatial resolutions with large swath width. Generally, crop phenological development studies utilized SAR b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Subhadip Dey, Narayanarao Bhogapurapu, Saeid Homayouni, Avik Bhattacharya, Heather McNairn
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7cca86ff896b430194d5ba681747f379
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Global crop mapping and monitoring requires high-resolution spatio-temporal information. In this regard, dual polarimetric Synthetic Aperture Radar (SAR) sensors provide high temporal and high spatial resolutions with large swath width. Generally, crop phenological development studies utilized SAR backscatter intensity-based descriptors. However, these descriptors are derived either from the covariance matrix elements or from the eigendecomposition. Therefore, this approach fails to utilize the complete polarization information of the scattered wave. In this study, we propose a target characterization parameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> that utilizes the 2D Barakat degree of polarization and the elements of the covariance matrix. We also propose an unsupervised clustering scheme using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> and the scattering entropy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi>xP</mi></msub></semantics></math></inline-formula>. We utilize time-series Sentinel-1 data of canola and wheat fields over a Canadian test site to show the sensitivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> to the development of crop morphology at different phenological stages. During the initial growth stages, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> values are low due to the low vegetation density. In contrast, at advanced phenological stages, we observe decreased values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>xP</mi></msub></semantics></math></inline-formula> due to the appearance of complex canopy structure. Similarly, the effectiveness of the unsupervised <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>xP</mi></msub><mo>/</mo><msub><mi>θ</mi><mi>xP</mi></msub></mrow></semantics></math></inline-formula> clustering plane is also evident from the temporal clustering plots. This innovative clustering framework is beneficial for the operational use of Sentinel-1 SAR data for agricultural applications.