Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

Computational methods are becoming an increasingly important part of biological research. Using the Rosetta framework as an example, the authors demonstrate how community-driven development of computational methods can be done in a reproducible and reliable fashion.

Guardado en:
Detalles Bibliográficos
Autores principales: Julia Koehler Leman, Sergey Lyskov, Steven M. Lewis, Jared Adolf-Bryfogle, Rebecca F. Alford, Kyle Barlow, Ziv Ben-Aharon, Daniel Farrell, Jason Fell, William A. Hansen, Ameya Harmalkar, Jeliazko Jeliazkov, Georg Kuenze, Justyna D. Krys, Ajasja Ljubetič, Amanda L. Loshbaugh, Jack Maguire, Rocco Moretti, Vikram Khipple Mulligan, Morgan L. Nance, Phuong T. Nguyen, Shane Ó Conchúir, Shourya S. Roy Burman, Rituparna Samanta, Shannon T. Smith, Frank Teets, Johanna K. S. Tiemann, Andrew Watkins, Hope Woods, Brahm J. Yachnin, Christopher D. Bahl, Chris Bailey-Kellogg, David Baker, Rhiju Das, Frank DiMaio, Sagar D. Khare, Tanja Kortemme, Jason W. Labonte, Kresten Lindorff-Larsen, Jens Meiler, William Schief, Ora Schueler-Furman, Justin B. Siegel, Amelie Stein, Vladimir Yarov-Yarovoy, Brian Kuhlman, Andrew Leaver-Fay, Dominik Gront, Jeffrey J. Gray, Richard Bonneau
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7ccba8c202cd473d906c246ef7b2eb77
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares