The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements

The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model combining both a measurement model (e.g., an item response model, IRM) and a struct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chueh An Hsieh, Alexander von Eye
Formato: article
Lenguaje:EN
ES
Publicado: Universidad de San Buenaventura 2010
Materias:
Acceso en línea:https://doaj.org/article/7cd1cc3593d846deba4ab3b4fdd6a432
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7cd1cc3593d846deba4ab3b4fdd6a432
record_format dspace
spelling oai:doaj.org-article:7cd1cc3593d846deba4ab3b4fdd6a4322021-11-25T02:23:56ZThe best of both worlds: a joint modeling approach for the assessment of change across repeated measurements10.21500/20112084.8622011-20842011-7922https://doaj.org/article/7cd1cc3593d846deba4ab3b4fdd6a4322010-06-01T00:00:00Zhttps://revistas.usb.edu.co/index.php/IJPR/article/view/862https://doaj.org/toc/2011-2084https://doaj.org/toc/2011-7922The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model combining both a measurement model (e.g., an item response model, IRM) and a structural model (e.g., a latent variable model, LVM). That is, through the incorporation of the probit link and Bayesian estimation, the item response model can be introduced naturally into a latent variable model. The utility of this IRM-LVM comprehensive framework is investigated with a real data example and promising results are obtained, in which the data drawn from part of the British Social Attitudes Panel Survey 1983-1986 reveal the attitude toward abortion of a representative sample of adults aged 18 or older living in Great Britain. The application of IRMs to responses gathered from repeated assessments allows us to take the characteristics of both item responses and measurement error into consideration in the analysis of individual developmental trajectories, and helps resolve some difficult modeling issues commonly encountered in developmental research, such as small sample sizes, multiple discretely scaled items, many repeated assessments, and attrition over time.Chueh An HsiehAlexander von EyeUniversidad de San BuenaventuraarticleBayesian inferenceitem response modellatent growth curve analysissimulationgeneralized linear latent and mixed modelPsychologyBF1-990ENESInternational Journal of Psychological Research, Vol 3, Iss 1 (2010)
institution DOAJ
collection DOAJ
language EN
ES
topic Bayesian inference
item response model
latent growth curve analysis
simulation
generalized linear latent and mixed model
Psychology
BF1-990
spellingShingle Bayesian inference
item response model
latent growth curve analysis
simulation
generalized linear latent and mixed model
Psychology
BF1-990
Chueh An Hsieh
Alexander von Eye
The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
description The usefulness of Bayesian methods in estimating complex statistical models is undeniable. From a Bayesian standpoint, this paper aims to demonstrate the capacity of Bayesian methods and propose a comprehensive model combining both a measurement model (e.g., an item response model, IRM) and a structural model (e.g., a latent variable model, LVM). That is, through the incorporation of the probit link and Bayesian estimation, the item response model can be introduced naturally into a latent variable model. The utility of this IRM-LVM comprehensive framework is investigated with a real data example and promising results are obtained, in which the data drawn from part of the British Social Attitudes Panel Survey 1983-1986 reveal the attitude toward abortion of a representative sample of adults aged 18 or older living in Great Britain. The application of IRMs to responses gathered from repeated assessments allows us to take the characteristics of both item responses and measurement error into consideration in the analysis of individual developmental trajectories, and helps resolve some difficult modeling issues commonly encountered in developmental research, such as small sample sizes, multiple discretely scaled items, many repeated assessments, and attrition over time.
format article
author Chueh An Hsieh
Alexander von Eye
author_facet Chueh An Hsieh
Alexander von Eye
author_sort Chueh An Hsieh
title The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_short The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_full The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_fullStr The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_full_unstemmed The best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
title_sort best of both worlds: a joint modeling approach for the assessment of change across repeated measurements
publisher Universidad de San Buenaventura
publishDate 2010
url https://doaj.org/article/7cd1cc3593d846deba4ab3b4fdd6a432
work_keys_str_mv AT chuehanhsieh thebestofbothworldsajointmodelingapproachfortheassessmentofchangeacrossrepeatedmeasurements
AT alexandervoneye thebestofbothworldsajointmodelingapproachfortheassessmentofchangeacrossrepeatedmeasurements
AT chuehanhsieh bestofbothworldsajointmodelingapproachfortheassessmentofchangeacrossrepeatedmeasurements
AT alexandervoneye bestofbothworldsajointmodelingapproachfortheassessmentofchangeacrossrepeatedmeasurements
_version_ 1718414645520236544