Qualitative similarities and differences in visual object representations between brains and deep networks
Deep neural networks are widely considered as good models for biological vision. Here, we describe several qualitative similarities and differences in object representations between brains and deep networks that elucidate when deep networks can be considered good models for biological vision and how...
Guardado en:
Autores principales: | Georgin Jacob, R. T. Pramod, Harish Katti, S. P. Arun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7cd522eabc00490c92594ee4a265578b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spontaneous representation of numerosity zero in a deep neural network for visual object recognition
por: Khaled Nasr, et al.
Publicado: (2021) -
Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons.
por: Carlo Baldassi, et al.
Publicado: (2013) -
Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Publisher Correction: Limits to visual representational correspondence between convolutional neural networks and the human brain
por: Yaoda Xu, et al.
Publicado: (2021) -
Structural connectivity differs between males and females in the brain object manipulation network.
por: Dongha Lee, et al.
Publicado: (2021)