Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient

Abstract Manipulation of cellular motility using a target signal can facilitate the development of biosensors or microbe-powered biorobots. Here, we engineered signal-dependent motility in Escherichia coli via the transcriptional control of a key motility gene. Without manipulating chemotaxis, signa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jayamary Divya Ravichandar, Adam G. Bower, A. Agung Julius, Cynthia H. Collins
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7ce974fb4c5e404380f246abf87b88f6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7ce974fb4c5e404380f246abf87b88f6
record_format dspace
spelling oai:doaj.org-article:7ce974fb4c5e404380f246abf87b88f62021-12-02T15:05:29ZTranscriptional control of motility enables directional movement of Escherichia coli in a signal gradient10.1038/s41598-017-08870-62045-2322https://doaj.org/article/7ce974fb4c5e404380f246abf87b88f62017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08870-6https://doaj.org/toc/2045-2322Abstract Manipulation of cellular motility using a target signal can facilitate the development of biosensors or microbe-powered biorobots. Here, we engineered signal-dependent motility in Escherichia coli via the transcriptional control of a key motility gene. Without manipulating chemotaxis, signal-dependent switching of motility, either on or off, led to population-level directional movement of cells up or down a signal gradient. We developed a mathematical model that captures the behaviour of the cells, enables identification of key parameters controlling system behaviour, and facilitates predictive-design of motility-based pattern formation. We demonstrated that motility of the receiver strains could be controlled by a sender strain generating a signal gradient. The modular quorum sensing-dependent architecture for interfacing different senders with receivers enabled a broad range of systems-level behaviours. The directional control of motility, especially combined with the potential to incorporate tuneable sensors and more complex sensing-logic, may lead to tools for novel biosensing and targeted-delivery applications.Jayamary Divya RavichandarAdam G. BowerA. Agung JuliusCynthia H. CollinsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jayamary Divya Ravichandar
Adam G. Bower
A. Agung Julius
Cynthia H. Collins
Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient
description Abstract Manipulation of cellular motility using a target signal can facilitate the development of biosensors or microbe-powered biorobots. Here, we engineered signal-dependent motility in Escherichia coli via the transcriptional control of a key motility gene. Without manipulating chemotaxis, signal-dependent switching of motility, either on or off, led to population-level directional movement of cells up or down a signal gradient. We developed a mathematical model that captures the behaviour of the cells, enables identification of key parameters controlling system behaviour, and facilitates predictive-design of motility-based pattern formation. We demonstrated that motility of the receiver strains could be controlled by a sender strain generating a signal gradient. The modular quorum sensing-dependent architecture for interfacing different senders with receivers enabled a broad range of systems-level behaviours. The directional control of motility, especially combined with the potential to incorporate tuneable sensors and more complex sensing-logic, may lead to tools for novel biosensing and targeted-delivery applications.
format article
author Jayamary Divya Ravichandar
Adam G. Bower
A. Agung Julius
Cynthia H. Collins
author_facet Jayamary Divya Ravichandar
Adam G. Bower
A. Agung Julius
Cynthia H. Collins
author_sort Jayamary Divya Ravichandar
title Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient
title_short Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient
title_full Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient
title_fullStr Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient
title_full_unstemmed Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient
title_sort transcriptional control of motility enables directional movement of escherichia coli in a signal gradient
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/7ce974fb4c5e404380f246abf87b88f6
work_keys_str_mv AT jayamarydivyaravichandar transcriptionalcontrolofmotilityenablesdirectionalmovementofescherichiacoliinasignalgradient
AT adamgbower transcriptionalcontrolofmotilityenablesdirectionalmovementofescherichiacoliinasignalgradient
AT aagungjulius transcriptionalcontrolofmotilityenablesdirectionalmovementofescherichiacoliinasignalgradient
AT cynthiahcollins transcriptionalcontrolofmotilityenablesdirectionalmovementofescherichiacoliinasignalgradient
_version_ 1718388841051586560