Clifford Circuit Optimization with Templates and Symbolic Pauli Gates
The Clifford group is a finite subgroup of the unitary group generated by the Hadamard, the CNOT, and the Phase gates. This group plays a prominent role in quantum error correction, randomized benchmarking protocols, and the study of entanglement. Here we consider the problem of finding a short quan...
Guardado en:
Autores principales: | Sergey Bravyi, Ruslan Shaydulin, Shaohan Hu, Dmitri Maslov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d0859525d074bea9cde649fb06421fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Error mitigation with Clifford quantum-circuit data
por: Piotr Czarnik, et al.
Publicado: (2021) -
Automated optimization of large quantum circuits with continuous parameters
por: Yunseong Nam, et al.
Publicado: (2018) -
Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits
por: Mohammadsadegh Khazali, et al.
Publicado: (2020) -
Engineering Classical Capacity of Generalized Pauli Channels with Admissible Memory Kernels
por: Katarzyna Siudzińska, et al.
Publicado: (2021) -
Self-Assembly of Informational Polymers by Templated Ligation
por: Joachim H. Rosenberger, et al.
Publicado: (2021)