Automated stopping criterion for spectral measurements with active learning
Abstract The automated stopping of a spectral measurement with active learning is proposed. The optimal stopping of the measurement is realised with a stopping criterion based on the upper bound of the posterior average of the generalisation error of the Gaussian process regression. It is revealed t...
Enregistré dans:
Auteurs principaux: | Tetsuro Ueno, Hideaki Ishibashi, Hideitsu Hino, Kanta Ono |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7d0e960186a94c6d849eea07d0d17fa7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automated calculation and convergence of defect transport tensors
par: Thomas D. Swinburne, et autres
Publié: (2020) -
Bayesian optimization with adaptive surrogate models for automated experimental design
par: Bowen Lei, et autres
Publié: (2021) -
Automation of diffusion database development in multicomponent alloys from large number of experimental composition profiles
par: Jing Zhong, et autres
Publié: (2021) -
Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
par: Ayana Ghosh, et autres
Publié: (2021) -
Spin–valley Hall phenomena driven by Van Hove singularities in blistered graphene
par: M. Umar Farooq, et autres
Publié: (2020)