Machine Learning Based on Resampling Approaches and Deep Reinforcement Learning for Credit Card Fraud Detection Systems
The problem of imbalanced datasets is a significant concern when creating reliable credit card fraud (CCF) detection systems. In this work, we study and evaluate recent advances in machine learning (ML) algorithms and deep reinforcement learning (DRL) used for CCF detection systems, including fraud...
Guardado en:
Autores principales: | Tran Khanh Dang, Thanh Cong Tran, Luc Minh Tuan, Mai Viet Tiep |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d123f64ba5242b6826b8c4558a006d3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ANALYZING THE IMPACT OF RESAMPLING METHOD FOR IMBALANCED DATA TEXT IN INDONESIAN SCIENTIFIC ARTICLES CATEGORIZATION
por: Ariani Indrawati, et al.
Publicado: (2020) -
Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest
por: Tzu-Hsuan Lin, et al.
Publicado: (2021) -
Enhanced credit card fraud detection based on attention mechanism and LSTM deep model
por: Ibtissam Benchaji, et al.
Publicado: (2021) -
Selection of the Right Undergraduate Major by Students Using Supervised Learning Techniques
por: Alhuseen Omar Alsayed, et al.
Publicado: (2021) -
Debit and Credit Cards: Money Velocity Risks
por: Hari Setia Putra, et al.
Publicado: (2021)