Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning
In this paper, we propose a Deep Learning architecture for several Italian Natural Language Processing tasks based on a state of the art model that exploits both word- and character-level representations through the combination of bidirectional LSTM, CNN and CRF. This architecture provided state of...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d12c46b5d31477aacc399f811980343 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7d12c46b5d31477aacc399f811980343 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7d12c46b5d31477aacc399f8119803432021-12-02T09:52:19ZBi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning2499-455310.4000/ijcol.553https://doaj.org/article/7d12c46b5d31477aacc399f8119803432017-12-01T00:00:00Zhttp://journals.openedition.org/ijcol/553https://doaj.org/toc/2499-4553In this paper, we propose a Deep Learning architecture for several Italian Natural Language Processing tasks based on a state of the art model that exploits both word- and character-level representations through the combination of bidirectional LSTM, CNN and CRF. This architecture provided state of the art performance in several sequence labeling tasks for the English language. We exploit the same approach for the Italian language and extend it for performing a multi-task learning involving PoS-tagging and sentiment analysis. Results show that the system is able to achieve state of the art performance in all the tasks and in some cases overcomes the best systems previously developed for the Italian.Pierpaolo BasilePierluigi CassottiLucia SicilianiGiovanni SemeraroAccademia University PressarticleSocial SciencesHComputational linguistics. Natural language processingP98-98.5ENIJCoL, Vol 3, Iss 2, Pp 37-50 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Social Sciences H Computational linguistics. Natural language processing P98-98.5 |
spellingShingle |
Social Sciences H Computational linguistics. Natural language processing P98-98.5 Pierpaolo Basile Pierluigi Cassotti Lucia Siciliani Giovanni Semeraro Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning |
description |
In this paper, we propose a Deep Learning architecture for several Italian Natural Language Processing tasks based on a state of the art model that exploits both word- and character-level representations through the combination of bidirectional LSTM, CNN and CRF. This architecture provided state of the art performance in several sequence labeling tasks for the English language. We exploit the same approach for the Italian language and extend it for performing a multi-task learning involving PoS-tagging and sentiment analysis. Results show that the system is able to achieve state of the art performance in all the tasks and in some cases overcomes the best systems previously developed for the Italian. |
format |
article |
author |
Pierpaolo Basile Pierluigi Cassotti Lucia Siciliani Giovanni Semeraro |
author_facet |
Pierpaolo Basile Pierluigi Cassotti Lucia Siciliani Giovanni Semeraro |
author_sort |
Pierpaolo Basile |
title |
Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning |
title_short |
Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning |
title_full |
Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning |
title_fullStr |
Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning |
title_full_unstemmed |
Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning |
title_sort |
bi-directional lstm-cnns-crf for italian sequence labeling and multi-task learning |
publisher |
Accademia University Press |
publishDate |
2017 |
url |
https://doaj.org/article/7d12c46b5d31477aacc399f811980343 |
work_keys_str_mv |
AT pierpaolobasile bidirectionallstmcnnscrfforitaliansequencelabelingandmultitasklearning AT pierluigicassotti bidirectionallstmcnnscrfforitaliansequencelabelingandmultitasklearning AT luciasiciliani bidirectionallstmcnnscrfforitaliansequencelabelingandmultitasklearning AT giovannisemeraro bidirectionallstmcnnscrfforitaliansequencelabelingandmultitasklearning |
_version_ |
1718397954028470272 |