Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning
In this paper, we propose a Deep Learning architecture for several Italian Natural Language Processing tasks based on a state of the art model that exploits both word- and character-level representations through the combination of bidirectional LSTM, CNN and CRF. This architecture provided state of...
Guardado en:
Autores principales: | Pierpaolo Basile, Pierluigi Cassotti, Lucia Siciliani, Giovanni Semeraro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d12c46b5d31477aacc399f811980343 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analyzing Gaussian distribution of semantic shifts in Lexical Semantic Change Models
por: Pierluigi Cassotti, et al.
Publicado: (2020) -
Entity Linking for the Semantic Annotation of Italian Tweets
por: Pierpaolo Basile, et al.
Publicado: (2016) -
AlBERTo: Modeling Italian Social Media Language with BERT
por: Marco Polignano, et al.
Publicado: (2019) -
Temporal Random Indexing: A System for Analysing Word Meaning over Time
por: Annalina Caputo, et al.
Publicado: (2015) -
EVALITA Goes Social: Tasks, Data, and Community at the 2016 Edition
por: Pierpaolo Basile, et al.
Publicado: (2017)