Bi-directional LSTM-CNNs-CRF for Italian Sequence Labeling and Multi-Task Learning

In this paper, we propose a Deep Learning architecture for several Italian Natural Language Processing tasks based on a state of the art model that exploits both word- and character-level representations through the combination of bidirectional LSTM, CNN and CRF. This architecture provided state of...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Pierpaolo Basile, Pierluigi Cassotti, Lucia Siciliani, Giovanni Semeraro
Format: article
Langue:EN
Publié: Accademia University Press 2017
Sujets:
H
Accès en ligne:https://doaj.org/article/7d12c46b5d31477aacc399f811980343
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!