Sustainability Assessment of Combined Animal Fodder and Fuel Production from Microalgal Biomass

We present a comparative environmental and social life cycle assessment (ELCA and SLCA) of algal fuel and fodder co-production (AF + fodder) versus algal fuel and energy co-production (AF + energy). Our ELCA results indicate that fodder co-production offers an advantage in the following categories:...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benjamin W. Portner, Antonio Valente, Sandy Guenther
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
R
Acceso en línea:https://doaj.org/article/7d13ca8ba6114fa6a61cba30da27876c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We present a comparative environmental and social life cycle assessment (ELCA and SLCA) of algal fuel and fodder co-production (AF + fodder) versus algal fuel and energy co-production (AF + energy). Our ELCA results indicate that fodder co-production offers an advantage in the following categories: climate change (biogenic land use and land use change total), ecotoxicity, marine eutrophication, ionizing radiation, photochemical ozone creation, and land use. By contrast, the AF + energy system yields lower impacts in the other 11 out of 19 Environmental Footprint impact categories. Only AF + fodder offers greenhouse gas reduction compared to petroleum diesel (−25%). Our SLCA results indicate that AF + fodder yields lower impacts in the following categories: fair salaries, forced labor, gender wage gap, health expenditure, unemployment, and violation of employment laws and regulations. AF + energy performs favorably in the other three out of nine social indicators. We conclude that the choice of co-products has a strong influence on the sustainability of algal fuel production. Despite this, none of the compared systems are found to yield a consistent advantage in the environmental or social dimension. It is, therefore, not possible to recommend a co-production strategy without weighing environmental and social issues.