A general-purpose machine-learning force field for bulk and nanostructured phosphorus
Atomistic simulations of phosphorus represent a challenge due to the element’s highly diverse allotropic structures. Here the authors propose a general-purpose machine-learning force field for elemental phosphorus, which can describe a broad range of relevant bulk and nanostructured allotropes.
Guardado en:
Autores principales: | Volker L. Deringer, Miguel A. Caro, Gábor Csányi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d1920e3b9eb483f990f704cafbd6cea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Energy-free machine learning force field for aluminum
por: Ivan Kruglov, et al.
Publicado: (2017) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Stefan Chmiela, et al.
Publicado: (2018) -
Trip Purpose Imputation Using GPS Trajectories with Machine Learning
por: Qinggang Gao, et al.
Publicado: (2021) -
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
por: Conrad W. Rosenbrock, et al.
Publicado: (2017)