Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determi...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7d4d7877ccbf48aa9043f85191147eca |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7d4d7877ccbf48aa9043f85191147eca2021-12-02T19:10:21ZMachine learning predictions of surface migration barriers in nucleation and non-equilibrium growth10.1038/s43246-021-00188-12662-4443https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca2021-09-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00188-1https://doaj.org/toc/2662-4443Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determined.Thomas MartynecChristos KarapanagiotisSabine H. L. KlappStefan KowarikNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Thomas Martynec Christos Karapanagiotis Sabine H. L. Klapp Stefan Kowarik Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
description |
Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determined. |
format |
article |
author |
Thomas Martynec Christos Karapanagiotis Sabine H. L. Klapp Stefan Kowarik |
author_facet |
Thomas Martynec Christos Karapanagiotis Sabine H. L. Klapp Stefan Kowarik |
author_sort |
Thomas Martynec |
title |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_short |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_full |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_fullStr |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_full_unstemmed |
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
title_sort |
machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca |
work_keys_str_mv |
AT thomasmartynec machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth AT christoskarapanagiotis machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth AT sabinehlklapp machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth AT stefankowarik machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth |
_version_ |
1718377096878751744 |