Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth

Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas Martynec, Christos Karapanagiotis, Sabine H. L. Klapp, Stefan Kowarik
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7d4d7877ccbf48aa9043f85191147eca
record_format dspace
spelling oai:doaj.org-article:7d4d7877ccbf48aa9043f85191147eca2021-12-02T19:10:21ZMachine learning predictions of surface migration barriers in nucleation and non-equilibrium growth10.1038/s43246-021-00188-12662-4443https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca2021-09-01T00:00:00Zhttps://doi.org/10.1038/s43246-021-00188-1https://doaj.org/toc/2662-4443Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determined.Thomas MartynecChristos KarapanagiotisSabine H. L. KlappStefan KowarikNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 2, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Thomas Martynec
Christos Karapanagiotis
Sabine H. L. Klapp
Stefan Kowarik
Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
description Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determined.
format article
author Thomas Martynec
Christos Karapanagiotis
Sabine H. L. Klapp
Stefan Kowarik
author_facet Thomas Martynec
Christos Karapanagiotis
Sabine H. L. Klapp
Stefan Kowarik
author_sort Thomas Martynec
title Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
title_short Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
title_full Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
title_fullStr Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
title_full_unstemmed Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
title_sort machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca
work_keys_str_mv AT thomasmartynec machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth
AT christoskarapanagiotis machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth
AT sabinehlklapp machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth
AT stefankowarik machinelearningpredictionsofsurfacemigrationbarriersinnucleationandnonequilibriumgrowth
_version_ 1718377096878751744