Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth
Experiments and simulations can reveal energetic barriers during atomic-scale growth but are time-consuming. Here, machine learning is applied to single images from kinetic Monte Carlo simulations of sub-monolayer film growth, allowing diffusion barriers and binding energies to be accurately determi...
Guardado en:
Autores principales: | Thomas Martynec, Christos Karapanagiotis, Sabine H. L. Klapp, Stefan Kowarik |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d4d7877ccbf48aa9043f85191147eca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Site dependence of surface dislocation nucleation in ceramic nanoparticles
por: Jonathan Amodeo, et al.
Publicado: (2021) -
Near-unity broadband omnidirectional emissivity via femtosecond laser surface processing
por: Andrew Reicks, et al.
Publicado: (2021) -
Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening
por: Min Yang, et al.
Publicado: (2021) -
Plant-like hooked miniature machines for on-leaf sensing and delivery
por: Isabella Fiorello, et al.
Publicado: (2021) -
High temperature oxidation of corrosion resistant alloys from machine learning
por: Christopher D. Taylor, et al.
Publicado: (2021)