Forecasting vehicle accelerations using LSTM
The purpose of this paper is to forecast vehicle accelerations by using a Long Short Term Memory (LSTM) approach. Such a predictive capability can be particularly helpful in the case of medical emergency vehicles. During emergency transport, a patient is likely to experience vehicle accelerations in...
Guardado en:
Autores principales: | Takeyuki ONO, Ryosuke ETO, Junya YAMAKAWA |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Japan Society of Mechanical Engineers
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d5811d17264484ebc7e02705896877e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021) -
Forecasting Electricity Load With Hybrid Scalable Model Based on Stacked Non Linear Residual Approach
por: Ayush Sinha, et al.
Publicado: (2021) -
A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning
por: Xiaoming Xie, et al.
Publicado: (2021) -
Research on Precipitation Forecast Based on LSTM–CP Combined Model
por: Yan Guo, et al.
Publicado: (2021) -
Research on LSTM+Attention Model of Infant Cry Classification
por: Tianye Jian, et al.
Publicado: (2021)