Predicting language treatment response in bilingual aphasia using neural network-based patient models
Abstract Predicting language therapy outcomes in bilinguals with aphasia (BWA) remains challenging due to the multiple pre- and poststroke factors that determine the deficits and recovery of their two languages. Computational models that simulate language impairment and treatment outcomes in BWA can...
Guardado en:
Autores principales: | Uli Grasemann, Claudia Peñaloza, Maria Dekhtyar, Risto Miikkulainen, Swathi Kiran |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d581e2a474345e08945d1f3d7e77c5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Treatment for Anomia in Bilingual Speakers with Progressive Aphasia
por: Stephanie M. Grasso, et al.
Publicado: (2021) -
Predicting language recovery in post-stroke aphasia using behavior and functional MRI
por: Michael Iorga, et al.
Publicado: (2021) -
The Russian Aphasia Test: The first comprehensive, quantitative, standardized, and computerized aphasia language battery in Russian.
por: Maria V Ivanova, et al.
Publicado: (2021) -
The Russian Aphasia Test: The first comprehensive, quantitative, standardized, and computerized aphasia language battery in Russian
por: Maria V. Ivanova, et al.
Publicado: (2021) -
MOTHER LANGUAGE, SECONT LANGUAGE, BILINGUALISM, FOREIGN LANGUAGE
por: Şerif ORUÇ
Publicado: (2019)