Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials

In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer compo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jawad Kadhim Oleiwi, Qahtan Adnan Hamad
Formato: article
Lenguaje:EN
Publicado: Al-Khwarizmi College of Engineering – University of Baghdad 2018
Materias:
Acceso en línea:https://doaj.org/article/7d585e47e57a4673bfaac8571a9c4b48
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7d585e47e57a4673bfaac8571a9c4b48
record_format dspace
spelling oai:doaj.org-article:7d585e47e57a4673bfaac8571a9c4b482021-12-02T04:16:22ZStudying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials10.22153/kej.2018.01.0061818-11712312-0789https://doaj.org/article/7d585e47e57a4673bfaac8571a9c4b482018-09-01T00:00:00Zhttp://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/94https://doaj.org/toc/1818-1171https://doaj.org/toc/2312-0789 In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO2) particles, while the second group consists of PMMA resin reinforced by (micro-lignin) particles. The mechanical tests performed in this research includedtensile test, compression test, impact test and hardness test. The results of this study showed that the values of tensile modulus of elasticity, compressive strength and hardness properties increased with increasing the volume fraction of these particles in PMMA composite materials. While, the values of tensile strength, elongation and impact strength properties decreased. Also, the addition of (nano-ZrO2) particles showed greater effect than that of (micro-lignin) particles in some properties of PMMA composite materials for prosthesis denture base materials specimens, while they have lower effect for the other properties. Jawad Kadhim OleiwiQahtan Adnan HamadAl-Khwarizmi College of Engineering – University of BaghdadarticleCompression Test, Lignin, Nano-ZrO2, Hardness Test, Impact Test, Particles, PMMA, Tensile Test.Chemical engineeringTP155-156Engineering (General). Civil engineering (General)TA1-2040ENAl-Khawarizmi Engineering Journal, Vol 14, Iss 3 (2018)
institution DOAJ
collection DOAJ
language EN
topic Compression Test, Lignin, Nano-ZrO2, Hardness Test, Impact Test, Particles, PMMA, Tensile Test.
Chemical engineering
TP155-156
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Compression Test, Lignin, Nano-ZrO2, Hardness Test, Impact Test, Particles, PMMA, Tensile Test.
Chemical engineering
TP155-156
Engineering (General). Civil engineering (General)
TA1-2040
Jawad Kadhim Oleiwi
Qahtan Adnan Hamad
Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
description In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO2) particles, while the second group consists of PMMA resin reinforced by (micro-lignin) particles. The mechanical tests performed in this research includedtensile test, compression test, impact test and hardness test. The results of this study showed that the values of tensile modulus of elasticity, compressive strength and hardness properties increased with increasing the volume fraction of these particles in PMMA composite materials. While, the values of tensile strength, elongation and impact strength properties decreased. Also, the addition of (nano-ZrO2) particles showed greater effect than that of (micro-lignin) particles in some properties of PMMA composite materials for prosthesis denture base materials specimens, while they have lower effect for the other properties.
format article
author Jawad Kadhim Oleiwi
Qahtan Adnan Hamad
author_facet Jawad Kadhim Oleiwi
Qahtan Adnan Hamad
author_sort Jawad Kadhim Oleiwi
title Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
title_short Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
title_full Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
title_fullStr Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
title_full_unstemmed Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
title_sort studying the mechanical properties of denture base materials fabricated from polymer composite materials
publisher Al-Khwarizmi College of Engineering – University of Baghdad
publishDate 2018
url https://doaj.org/article/7d585e47e57a4673bfaac8571a9c4b48
work_keys_str_mv AT jawadkadhimoleiwi studyingthemechanicalpropertiesofdenturebasematerialsfabricatedfrompolymercompositematerials
AT qahtanadnanhamad studyingthemechanicalpropertiesofdenturebasematerialsfabricatedfrompolymercompositematerials
_version_ 1718401381300174848