Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film
The Support Vector Machine (SVM) method is a method that is widely used in the classification process. The success of the classification of the SVM method depends on the soft margin coefficient C, as well as the parameter of the kernel function. The SVM parameters are usually obtained by trial and...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | ID |
Publicado: |
Ikatan Ahli Indormatika Indonesia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d5a8cd39bd446f796a5db12d597b93c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7d5a8cd39bd446f796a5db12d597b93c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7d5a8cd39bd446f796a5db12d597b93c2021-11-16T13:16:12ZOptimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film2580-076010.29207/resti.v5i5.3380https://doaj.org/article/7d5a8cd39bd446f796a5db12d597b93c2021-10-01T00:00:00Zhttp://jurnal.iaii.or.id/index.php/RESTI/article/view/3380https://doaj.org/toc/2580-0760The Support Vector Machine (SVM) method is a method that is widely used in the classification process. The success of the classification of the SVM method depends on the soft margin coefficient C, as well as the parameter of the kernel function. The SVM parameters are usually obtained by trial and error, but this method takes a long time because they have to try every combination of SVM parameters, therefore the purpose of this study is to find the optimal SVM parameter value based on accuracy. This study uses the Firefly Algorithm (FA) as a method for optimizing SVM parameters. The data set used in this study is data on public opinion on several films. Class labels used in data classification are positive class labels and negative class labels. The amount of data used in this study is 2179 data, with the distribution of 436 data as test data and 1743 data as training data. Based on this data, an evaluation process was carried out on the Firefly Algorithm-Support Vector Machine (FA-SVM). The results of this study indicate that the Firefly Algorithm can obtain the optimal combination of SVM parameters based on accuracy, so there is no need for trial and error to get that value. This is evidenced by the results of the FA-SVM evaluation using a value range of C=1.0-3.0 and =0.1-1.0 resulting in the highest accuracy of 87.84%. The next evaluation using a range of values C=1.0-3.0 and =1.0-2.0 resulted in the highest accuracy of 87.15%.StyawatiAndi NurkholisZaenal AbidinHeni SulistianiIkatan Ahli Indormatika Indonesiaarticlesvm, fa-svm, classification, optimization, public opinionSystems engineeringTA168Information technologyT58.5-58.64IDJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 5, Iss 5, Pp 904-910 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
ID |
topic |
svm, fa-svm, classification, optimization, public opinion Systems engineering TA168 Information technology T58.5-58.64 |
spellingShingle |
svm, fa-svm, classification, optimization, public opinion Systems engineering TA168 Information technology T58.5-58.64 Styawati Andi Nurkholis Zaenal Abidin Heni Sulistiani Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film |
description |
The Support Vector Machine (SVM) method is a method that is widely used in the classification process. The success of the classification of the SVM method depends on the soft margin coefficient C, as well as the parameter of the kernel function. The SVM parameters are usually obtained by trial and error, but this method takes a long time because they have to try every combination of SVM parameters, therefore the purpose of this study is to find the optimal SVM parameter value based on accuracy. This study uses the Firefly Algorithm (FA) as a method for optimizing SVM parameters. The data set used in this study is data on public opinion on several films. Class labels used in data classification are positive class labels and negative class labels. The amount of data used in this study is 2179 data, with the distribution of 436 data as test data and 1743 data as training data. Based on this data, an evaluation process was carried out on the Firefly Algorithm-Support Vector Machine (FA-SVM). The results of this study indicate that the Firefly Algorithm can obtain the optimal combination of SVM parameters based on accuracy, so there is no need for trial and error to get that value. This is evidenced by the results of the FA-SVM evaluation using a value range of C=1.0-3.0 and =0.1-1.0 resulting in the highest accuracy of 87.84%. The next evaluation using a range of values C=1.0-3.0 and =1.0-2.0 resulted in the highest accuracy of 87.15%. |
format |
article |
author |
Styawati Andi Nurkholis Zaenal Abidin Heni Sulistiani |
author_facet |
Styawati Andi Nurkholis Zaenal Abidin Heni Sulistiani |
author_sort |
Styawati |
title |
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film |
title_short |
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film |
title_full |
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film |
title_fullStr |
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film |
title_full_unstemmed |
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film |
title_sort |
optimasi parameter support vector machine berbasis algoritma firefly pada data opini film |
publisher |
Ikatan Ahli Indormatika Indonesia |
publishDate |
2021 |
url |
https://doaj.org/article/7d5a8cd39bd446f796a5db12d597b93c |
work_keys_str_mv |
AT styawati optimasiparametersupportvectormachineberbasisalgoritmafireflypadadataopinifilm AT andinurkholis optimasiparametersupportvectormachineberbasisalgoritmafireflypadadataopinifilm AT zaenalabidin optimasiparametersupportvectormachineberbasisalgoritmafireflypadadataopinifilm AT henisulistiani optimasiparametersupportvectormachineberbasisalgoritmafireflypadadataopinifilm |
_version_ |
1718426488634605568 |