Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film
The Support Vector Machine (SVM) method is a method that is widely used in the classification process. The success of the classification of the SVM method depends on the soft margin coefficient C, as well as the parameter of the kernel function. The SVM parameters are usually obtained by trial and...
Guardado en:
Autores principales: | Styawati, Andi Nurkholis, Zaenal Abidin, Heni Sulistiani |
---|---|
Formato: | article |
Lenguaje: | ID |
Publicado: |
Ikatan Ahli Indormatika Indonesia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d5a8cd39bd446f796a5db12d597b93c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
por: Jothi Letchumy Mahendra Kumar, et al.
Publicado: (2021) -
Perbandingan Metode Penyelesaian Permasalahan Optimasi Lintas Domain dengan Pendekatan Hyper-Heuristic Menggunakan Algoritma Reinforcement-Late Acceptance
por: Anang Firdaus, et al.
Publicado: (2021) -
Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika
por: Yudi Istianto, et al.
Publicado: (2021) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
por: Fatihah Rahmadayana, et al.
Publicado: (2021) -
Analisa Performa Penggunaan Feature Selection untuk Mendeteksi Intrusion Detection Systems dengan Algoritma Random Forest Classifier
por: Setiawan Budiman, et al.
Publicado: (2021)