In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia
Xiang-Xiang Li,1,2,* Kang-An Li,3,* Jin-Bao Qin,1,2 Kai-Chuang Ye,1,2 Xin-Rui Yang,1,2 Wei-Min Li,1,2 Qing-Song Xie,4 Mi-Er Jiang,1,2 Gui-Xiang Zhang,3 Xin-Wu Lu1,21Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Med...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d8658a5da494e9ea04b790744f477da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7d8658a5da494e9ea04b790744f477da |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7d8658a5da494e9ea04b790744f477da2021-12-02T09:08:32ZIn vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia1176-91141178-2013https://doaj.org/article/7d8658a5da494e9ea04b790744f477da2013-03-01T00:00:00Zhttp://www.dovepress.com/in-vivo-mri-tracking-of-iron-oxide-nanoparticle-labeled-human-mesenchy-a12439https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Xiang-Xiang Li,1,2,* Kang-An Li,3,* Jin-Bao Qin,1,2 Kai-Chuang Ye,1,2 Xin-Rui Yang,1,2 Wei-Min Li,1,2 Qing-Song Xie,4 Mi-Er Jiang,1,2 Gui-Xiang Zhang,3 Xin-Wu Lu1,21Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Vascular Center, Shanghai JiaoTong University, 3Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; 4Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, People's Republic of China *These authors contributed equally to this work Background: Stem cell transplantation has been investigated for repairing damaged tissues in various injury models. Monitoring the safety and fate of transplanted cells using noninvasive methods is important to advance this technique into clinical applications. Methods: In this study, lower-limb ischemia models were generated in nude mice by femoral artery ligation. As negative-contrast agents, positively charged magnetic iron oxide nanoparticles (aminopropyltriethoxysilane-coated Fe2O3) were investigated in terms of in vitro labeling efficiency, effects on human mesenchymal stromal cell (hMSC) proliferation, and in vivo magnetic resonance imaging (MRI) visualization. Ultimately, the mice were sacrificed for histological analysis three weeks after transplantation. Results: With efficient labeling, aminopropyltriethoxysilane-modified magnetic iron oxide nanoparticles (APTS-MNPs) did not significantly affect hMSC proliferation. In vivo, APTS-MNP-labeled hMSCs could be monitored by clinical 3 Tesla MRI for at least three weeks. Histological examination detected numerous migrated Prussian blue-positive cells, which was consistent with the magnetic resonance images. Some migrated Prussian blue-positive cells were positive for mature endothelial cell markers of von Willebrand factor and anti-human proliferating cell nuclear antigen. In the test groups, Prussian blue-positive nanoparticles, which could not be found in other organs, were detected in the spleen. Conclusion: APTS-MNPs could efficiently label hMSCs, and clinical 3 Tesla MRI could monitor the labeled stem cells in vivo, which may provide a new approach for the in vivo monitoring of implanted cells. Keywords: hind-limb ischemia, magnetic resonance imaging, iron oxide particles, stem cell implantLi XXLi KAQin JBYe KCYang XRLi WMXie QSJiang MEZhang GXLu XW.Dove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 1063-1073 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Li XX Li KA Qin JB Ye KC Yang XR Li WM Xie QS Jiang ME Zhang GX Lu XW. In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
description |
Xiang-Xiang Li,1,2,* Kang-An Li,3,* Jin-Bao Qin,1,2 Kai-Chuang Ye,1,2 Xin-Rui Yang,1,2 Wei-Min Li,1,2 Qing-Song Xie,4 Mi-Er Jiang,1,2 Gui-Xiang Zhang,3 Xin-Wu Lu1,21Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Vascular Center, Shanghai JiaoTong University, 3Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; 4Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, People's Republic of China *These authors contributed equally to this work Background: Stem cell transplantation has been investigated for repairing damaged tissues in various injury models. Monitoring the safety and fate of transplanted cells using noninvasive methods is important to advance this technique into clinical applications. Methods: In this study, lower-limb ischemia models were generated in nude mice by femoral artery ligation. As negative-contrast agents, positively charged magnetic iron oxide nanoparticles (aminopropyltriethoxysilane-coated Fe2O3) were investigated in terms of in vitro labeling efficiency, effects on human mesenchymal stromal cell (hMSC) proliferation, and in vivo magnetic resonance imaging (MRI) visualization. Ultimately, the mice were sacrificed for histological analysis three weeks after transplantation. Results: With efficient labeling, aminopropyltriethoxysilane-modified magnetic iron oxide nanoparticles (APTS-MNPs) did not significantly affect hMSC proliferation. In vivo, APTS-MNP-labeled hMSCs could be monitored by clinical 3 Tesla MRI for at least three weeks. Histological examination detected numerous migrated Prussian blue-positive cells, which was consistent with the magnetic resonance images. Some migrated Prussian blue-positive cells were positive for mature endothelial cell markers of von Willebrand factor and anti-human proliferating cell nuclear antigen. In the test groups, Prussian blue-positive nanoparticles, which could not be found in other organs, were detected in the spleen. Conclusion: APTS-MNPs could efficiently label hMSCs, and clinical 3 Tesla MRI could monitor the labeled stem cells in vivo, which may provide a new approach for the in vivo monitoring of implanted cells. Keywords: hind-limb ischemia, magnetic resonance imaging, iron oxide particles, stem cell implant |
format |
article |
author |
Li XX Li KA Qin JB Ye KC Yang XR Li WM Xie QS Jiang ME Zhang GX Lu XW. |
author_facet |
Li XX Li KA Qin JB Ye KC Yang XR Li WM Xie QS Jiang ME Zhang GX Lu XW. |
author_sort |
Li XX |
title |
In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
title_short |
In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
title_full |
In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
title_fullStr |
In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
title_full_unstemmed |
In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
title_sort |
in vivo mri tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia |
publisher |
Dove Medical Press |
publishDate |
2013 |
url |
https://doaj.org/article/7d8658a5da494e9ea04b790744f477da |
work_keys_str_mv |
AT lixx invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT lika invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT qinjb invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT yekc invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT yangxr invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT liwm invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT xieqs invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT jiangme invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT zhanggx invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia AT luxw invivomritrackingofironoxidenanoparticlelabeledhumanmesenchymalstemcellsinlimbischemia |
_version_ |
1718398253437812736 |