Model-reduction techniques for PDE models with Turing type electrochemical phase formation dynamics
Next-generation battery research will heavily rely on physico-chemical models, combined with deep learning methods and high-throughput and quantitative analysis of experimental datasets, encoding spectral information in space and time. These tasks will require highly efficient computational approach...
Enregistré dans:
Auteurs principaux: | Benedetto Bozzini, Angela Monti, Ivonne Sgura |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7d8a538b64ed421fb92591f3a4eb242d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Turing-Hopf patterns in a morphochemical model for electrodeposition with cross-diffusion
par: Deborah Lacitignola, et autres
Publié: (2021) -
Fourier analysis of an electrochemical phase formation model enables the rationalization of zinc-anode battery dynamics
par: Benedetto Bozzini, et autres
Publié: (2021) -
Dos criterios para la presencia de estados mentales: Descartes y Turing
par: González,Rodrigo
Publié: (2016) -
Autoencoder-Based Reduced Order Observer Design for a Class of Diffusion-Convection-Reaction Systems
par: Alexander Schaum
Publié: (2021) -
Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation
par: Ladislav Zjavka
Publié: (2021)