Observing deep radiomics for the classification of glioma grades
Abstract Deep learning is a promising method for medical image analysis because it can automatically acquire meaningful representations from raw data. However, a technical challenge lies in the difficulty of determining which types of internal representation are associated with a specific task, beca...
Guardado en:
Autores principales: | Kazuma Kobayashi, Mototaka Miyake, Masamichi Takahashi, Ryuji Hamamoto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7d9ab30c52ab416ebfdf238913536662 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
por: Zeju Li, et al.
Publicado: (2017) -
Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas
por: Yutao Wang, et al.
Publicado: (2021) -
A Molecular Predictor Reassesses Classification of Human Grade II/III Gliomas.
por: Thierry Rème, et al.
Publicado: (2013) -
Multimodal integrated approaches in low grade glioma surgery
por: Tamara Ius, et al.
Publicado: (2021) -
Molecular subtypes of glioblastoma are relevant to lower grade glioma.
por: Xiaowei Guan, et al.
Publicado: (2014)