Multi‐dimensional weighted cross‐attention network in crowded scenes
Abstract Human detection in crowded scenes is one of the research components of crowd safety problem analysis, such as emergency warning and security monitoring platforms. Although the existing anchor‐free methods have fast inference speed, they are not suitable for object detection in crowded scene...
Guardado en:
Autores principales: | Yefan Xie, Jiangbin Zheng, Xuan Hou, Irfan Raza Naqvi, Yue Xi, Nailiang Kuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7dad8689e7c14b8c9b305656b35d5263 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations
por: Mingyu Liu, et al.
Publicado: (2021) -
Crowd understanding and analysis
por: Qi Wang, et al.
Publicado: (2021) -
Learn from Object Counting: Crowd Counting with Meta‐learning
por: Changtong Zan, et al.
Publicado: (2021) -
MFP‐Net: Multi‐scale feature pyramid network for crowd counting
por: Tao Lei, et al.
Publicado: (2021) -
Human behaviour recognition with mid‐level representations for crowd understanding and analysis
por: Bangyong Sun, et al.
Publicado: (2021)