Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug

Kazi Mohsin,1 Rayan Alamri,1 Ajaz Ahmad,2 Mohammad Raish,3 Fars K Alanazi,1 Muhammad Delwar Hussain4 1Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, 2Department of Clinical Pharmacy, 3Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arab...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Moshin K, Alamri R, Ahmad A, Raish M, Alanazi FK, Hussain MD
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/7db5482dd4d44c56bbb6e4d7504080f1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Kazi Mohsin,1 Rayan Alamri,1 Ajaz Ahmad,2 Mohammad Raish,3 Fars K Alanazi,1 Muhammad Delwar Hussain4 1Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, 2Department of Clinical Pharmacy, 3Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 4Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Health Science University, Clovis, CA, USA Background: Self-nanoemulsifying drug delivery systems (SNEDDS) have become a popular formulation option as nanocarriers for poorly water-soluble drugs. The objective of this study was to investigate the factor that can influence the design of successful lipid formulation classification system (LFCS) Type III SNEDDS formulation and improve the oral bioavailability (BA) of fenofibrate. Materials and methods: LFCS Type III SNEDDS were designed using various oils, water-soluble surfactants, and/or cosolvents (in considering the polarity of the lipids) for the model anticholesterol drug, fenofibrate. The developed SNEDDS were assessed visually and by measurement of the droplet size. Equilibrium solubility of fenofibrate in the SNEDDS was conducted to find out the maximum drug loading. Dynamic dispersion studies were carried out (1/100 dilution) in water to investigate how much drug stays in solution after aqueous dispersion of the formulation. The BA of SNEDDS formulation was evaluated in the rat. Results: The results from the characterization and solubility studies showed that formulations containing mixed glycerides were highly efficient SNEDDS as they had higher solubility of the drug and produced nanosized droplets. The dispersion studies confirmed that SNEDDS (containing polar mixed glycerides) can retain >98% drug in solution for >24 hours in aqueous media. The in vivo pharmacokinetics parameters of SNEDDS formulation in comparison with pure drug showed significant increase in Cmax and AUC0–t, ~78% and 67%, respectively. The oral BA of fenofibrate from SNEDDS in rats was ~1.7-fold enhanced as compared with the BA from pure drug. Conclusion: Fenofibrate-loaded LFCS Type III SNEDDS formulations could be a potential oral pharmaceutical product for administering the poorly water-soluble drug, fenofibrate, with an enhanced oral BA. Keywords: lipid-based formulation, self-nanoemulsifying drug delivery systems, fenofibrate, solubility improvement, oral bioavailability