Predicting the clinical management of skin lesions using deep learning
Abstract Automated machine learning approaches to skin lesion diagnosis from images are approaching dermatologist-level performance. However, current machine learning approaches that suggest management decisions rely on predicting the underlying skin condition to infer a management decision without...
Guardado en:
Autores principales: | Kumar Abhishek, Jeremy Kawahara, Ghassan Hamarneh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7db5a0869123411895ea4b08b90c398b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI.
por: Sibaji Gaj, et al.
Publicado: (2021) -
Prediction of skin disease using a new cytological taxonomy based on cytology and pathology with deep residual learning method
por: Jin Bu, et al.
Publicado: (2021) -
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
por: Cheng-Hong Yang, et al.
Publicado: (2021) -
Towards perturbation prediction of biological networks using deep learning
por: Diya Li, et al.
Publicado: (2019) -
Intelligent Data Analytics for Diagnosing Melanoma Skin Lesions via Deep Learning in IoT System
por: Shixiang Zhang, et al.
Publicado: (2021)