Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis

Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mariana G. Ferrarini, Avantika Lal, Rita Rebollo, Andreas J. Gruber, Andrea Guarracino, Itziar Martinez Gonzalez, Taylor Floyd, Daniel Siqueira de Oliveira, Justin Shanklin, Ethan Beausoleil, Taneli Pusa, Brett E. Pickett, Vanessa Aguiar-Pulido
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/7db6be240b2d4d2b963adb464003e329
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and the host response to SARS-CoV-2 infection.