Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis
Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7db6be240b2d4d2b963adb464003e329 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and the host response to SARS-CoV-2 infection. |
---|