Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis
Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7db6be240b2d4d2b963adb464003e329 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7db6be240b2d4d2b963adb464003e329 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7db6be240b2d4d2b963adb464003e3292021-12-02T15:45:15ZGenome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis10.1038/s42003-021-02095-02399-3642https://doaj.org/article/7db6be240b2d4d2b963adb464003e3292021-05-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02095-0https://doaj.org/toc/2399-3642Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and the host response to SARS-CoV-2 infection.Mariana G. FerrariniAvantika LalRita RebolloAndreas J. GruberAndrea GuarracinoItziar Martinez GonzalezTaylor FloydDaniel Siqueira de OliveiraJustin ShanklinEthan BeausoleilTaneli PusaBrett E. PickettVanessa Aguiar-PulidoNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Mariana G. Ferrarini Avantika Lal Rita Rebollo Andreas J. Gruber Andrea Guarracino Itziar Martinez Gonzalez Taylor Floyd Daniel Siqueira de Oliveira Justin Shanklin Ethan Beausoleil Taneli Pusa Brett E. Pickett Vanessa Aguiar-Pulido Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis |
description |
Ferrarini & Lal et al. developed a novel bioinformatic pipeline to explore how SARS-CoV-2 interacts with human respiratory cells using public available host gene expression and viral genome sequence data. Several human genes and proteins were predicted to play a role in the viral life cycle and the host response to SARS-CoV-2 infection. |
format |
article |
author |
Mariana G. Ferrarini Avantika Lal Rita Rebollo Andreas J. Gruber Andrea Guarracino Itziar Martinez Gonzalez Taylor Floyd Daniel Siqueira de Oliveira Justin Shanklin Ethan Beausoleil Taneli Pusa Brett E. Pickett Vanessa Aguiar-Pulido |
author_facet |
Mariana G. Ferrarini Avantika Lal Rita Rebollo Andreas J. Gruber Andrea Guarracino Itziar Martinez Gonzalez Taylor Floyd Daniel Siqueira de Oliveira Justin Shanklin Ethan Beausoleil Taneli Pusa Brett E. Pickett Vanessa Aguiar-Pulido |
author_sort |
Mariana G. Ferrarini |
title |
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis |
title_short |
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis |
title_full |
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis |
title_fullStr |
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis |
title_full_unstemmed |
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis |
title_sort |
genome-wide bioinformatic analyses predict key host and viral factors in sars-cov-2 pathogenesis |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7db6be240b2d4d2b963adb464003e329 |
work_keys_str_mv |
AT marianagferrarini genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT avantikalal genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT ritarebollo genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT andreasjgruber genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT andreaguarracino genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT itziarmartinezgonzalez genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT taylorfloyd genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT danielsiqueiradeoliveira genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT justinshanklin genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT ethanbeausoleil genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT tanelipusa genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT brettepickett genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis AT vanessaaguiarpulido genomewidebioinformaticanalysespredictkeyhostandviralfactorsinsarscov2pathogenesis |
_version_ |
1718385760182206464 |