DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal
Li and Guan present a deep learning approach for automatically segmenting sleep arousal regions based on polysomnographic recordings. The algorithm, which won an open competition, enables fast and accurate delineation of sleep arousal events and would be useful in the scoring process in clinical stu...
Enregistré dans:
Auteurs principaux: | Hongyang Li, Yuanfang Guan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7dc0c7b085f0446ebd7d82fc30ea81e1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep convolutional neural networks for accurate somatic mutation detection
par: Sayed Mohammad Ebrahim Sahraeian, et autres
Publié: (2019) -
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
par: Robson V. Mendonca, et autres
Publié: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
par: Bekhzod Olimov, et autres
Publié: (2021) -
MC-SleepNet: Large-scale Sleep Stage Scoring in Mice by Deep Neural Networks
par: Masato Yamabe, et autres
Publié: (2019) -
Coastal Waste Detection Based on Deep Convolutional Neural Networks
par: Chengjuan Ren, et autres
Publié: (2021)