Experimental investigation on effect of using fine_grained and dolomite powder on physical characteristics of porous concrete separately
The use of porous concrete system in urban areas as a modern and applied management approach during rainfall can prevent the problems by rapid outflow of the surface runoff. In this research, effect of replacing dolomite minerals in two modes of fine-grained and powder, as part of the aggregates or...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Iranian Society of Structrual Engineering (ISSE)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7dd4a10aa70c411ca1e801f6e289c660 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The use of porous concrete system in urban areas as a modern and applied management approach during rainfall can prevent the problems by rapid outflow of the surface runoff. In this research, effect of replacing dolomite minerals in two modes of fine-grained and powder, as part of the aggregates or part of the cement, respectively, is investigated on the structural properties of porous concrete. In order to use porous concrete in urban runoff management system, the compressive strength and porosity should be considered. Two series of samples were made for structural experiments. The 15×15×15 cm samples were designed to test the compressive strength and the 10×10×10 cm samples were made to determine the porosity percentage. Statistical analyses of the laboratory results were performed using SPSS software. According to the results, replacement of dolomite powder for cement did not have significant effect on compressive strength and porosity. On the other hand, fine-grained dolomite has greatly improved the compressive strength. In addition to increasing the compressive strength, the porosity was increased due to the mechanism of particle placement in samples receiving 10% fine aggregates. Also adding 30% fine grained, increased compressive strength by 162%. This is while the porosity percentage has fallen sharply. |
---|