Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production

Masting is a complex mechanism which is mainly driven by a combination of internal plant resources and climatic conditions. While the driving role of climate in masting is being intensively studied, the interplay among climate, seed production, vegetation growth and phenology still needs further inv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Bajocco, C. Ferrara, M. Bascietto, A. Alivernini, R. Chirichella, A. Cutini, F. Chianucci
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/7de270e3466343e5ab47eaa060be0b66
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7de270e3466343e5ab47eaa060be0b66
record_format dspace
spelling oai:doaj.org-article:7de270e3466343e5ab47eaa060be0b662021-12-01T04:36:31ZCharacterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production1470-160X10.1016/j.ecolind.2020.107139https://doaj.org/article/7de270e3466343e5ab47eaa060be0b662021-02-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X20310785https://doaj.org/toc/1470-160XMasting is a complex mechanism which is mainly driven by a combination of internal plant resources and climatic conditions. While the driving role of climate in masting is being intensively studied, the interplay among climate, seed production, vegetation growth and phenology still needs further investigation. The objectives of this study were to identify the climatic determinants of different levels of seed production and of NDVI-based vegetation growth and phenology in European beech, and to evaluate if exists a trade-off between these two plant processes. To answer these questions, we used a 25-year-long dataset of beech seed production. We exploited the concept of ecological niche assuming that a mast year can be modeled like a species with variable preferences for different resources, which are the underlying annual climatic conditions; we performed an Ecological Niche Factor Analysis (ENFA), a presence-only modeling tool conventionally used in zoology and botany, and used seasonal (spring, summer, autumn) Standardized Precipitation-Evaporation Index (SPEI) observations, considering the current year (y−0), and up to one (y−1) and two (y−2) years before the masting event. For analyzing the role of vegetation growth and phenology, we used seasonal Normalized Difference Vegetation Index (NDVI) values and associated NDVI-based phenological metrics derived from Landsat imagery. Results indicated the driving role of climate for masting, especially in VHSP years. A moist summer and dry spring at y−2 and a dry summer at y−1 represented the main driving climatic conditions for masting; while a moist spring during the observation year represented the key condition for triggering higher intensities of seed production. Summer NDVI at y−0 and y−1 represented the variables discriminating best between masting and non-masting years and resulted as driven by opposite summer climatic conditions than seed production, thus indicating a trade-off between seed production and vegetation phenology. We concluded that reproduction and vegetation growth act as two different climate-dependent plant responses in beech, in a way that certain conditions through the years promote mast seeding and the opposite conditions favor vegetation growth. The understanding of climate-growth-masting relationships represents indispensable knowledge for providing a holistic view of masting mechanisms and developing adaptive forest management strategies in this species.S. BajoccoC. FerraraM. BasciettoA. AliverniniR. ChirichellaA. CutiniF. ChianucciElsevierarticleENFALandsatMastingNDVIPhenologySPEIEcologyQH540-549.5ENEcological Indicators, Vol 121, Iss , Pp 107139- (2021)
institution DOAJ
collection DOAJ
language EN
topic ENFA
Landsat
Masting
NDVI
Phenology
SPEI
Ecology
QH540-549.5
spellingShingle ENFA
Landsat
Masting
NDVI
Phenology
SPEI
Ecology
QH540-549.5
S. Bajocco
C. Ferrara
M. Bascietto
A. Alivernini
R. Chirichella
A. Cutini
F. Chianucci
Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production
description Masting is a complex mechanism which is mainly driven by a combination of internal plant resources and climatic conditions. While the driving role of climate in masting is being intensively studied, the interplay among climate, seed production, vegetation growth and phenology still needs further investigation. The objectives of this study were to identify the climatic determinants of different levels of seed production and of NDVI-based vegetation growth and phenology in European beech, and to evaluate if exists a trade-off between these two plant processes. To answer these questions, we used a 25-year-long dataset of beech seed production. We exploited the concept of ecological niche assuming that a mast year can be modeled like a species with variable preferences for different resources, which are the underlying annual climatic conditions; we performed an Ecological Niche Factor Analysis (ENFA), a presence-only modeling tool conventionally used in zoology and botany, and used seasonal (spring, summer, autumn) Standardized Precipitation-Evaporation Index (SPEI) observations, considering the current year (y−0), and up to one (y−1) and two (y−2) years before the masting event. For analyzing the role of vegetation growth and phenology, we used seasonal Normalized Difference Vegetation Index (NDVI) values and associated NDVI-based phenological metrics derived from Landsat imagery. Results indicated the driving role of climate for masting, especially in VHSP years. A moist summer and dry spring at y−2 and a dry summer at y−1 represented the main driving climatic conditions for masting; while a moist spring during the observation year represented the key condition for triggering higher intensities of seed production. Summer NDVI at y−0 and y−1 represented the variables discriminating best between masting and non-masting years and resulted as driven by opposite summer climatic conditions than seed production, thus indicating a trade-off between seed production and vegetation phenology. We concluded that reproduction and vegetation growth act as two different climate-dependent plant responses in beech, in a way that certain conditions through the years promote mast seeding and the opposite conditions favor vegetation growth. The understanding of climate-growth-masting relationships represents indispensable knowledge for providing a holistic view of masting mechanisms and developing adaptive forest management strategies in this species.
format article
author S. Bajocco
C. Ferrara
M. Bascietto
A. Alivernini
R. Chirichella
A. Cutini
F. Chianucci
author_facet S. Bajocco
C. Ferrara
M. Bascietto
A. Alivernini
R. Chirichella
A. Cutini
F. Chianucci
author_sort S. Bajocco
title Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production
title_short Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production
title_full Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production
title_fullStr Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production
title_full_unstemmed Characterizing the climatic niche of mast seeding in beech: Evidences of trade-offs between vegetation growth and seed production
title_sort characterizing the climatic niche of mast seeding in beech: evidences of trade-offs between vegetation growth and seed production
publisher Elsevier
publishDate 2021
url https://doaj.org/article/7de270e3466343e5ab47eaa060be0b66
work_keys_str_mv AT sbajocco characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
AT cferrara characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
AT mbascietto characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
AT aalivernini characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
AT rchirichella characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
AT acutini characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
AT fchianucci characterizingtheclimaticnicheofmastseedinginbeechevidencesoftradeoffsbetweenvegetationgrowthandseedproduction
_version_ 1718405851630272512