Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
The accuracy of a predictive system is critical for predictive maintenance and to support the right decisions at the right times. Statistical models, such as ARIMA and SARIMA, are unable to describe the stochastic nature of the data. Neural networks, such as long short-term memory (LSTM) and the gat...
Guardado en:
Autores principales: | Balduíno César Mateus, Mateus Mendes, José Torres Farinha, Rui Assis, António Marques Cardoso |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7de9e1b39c8f490c82767493d3dc258e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial Intelligence in Corporate Sustainability: Using LSTM and GRU for Going Concern Prediction
por: Der-Jang Chi, et al.
Publicado: (2021) -
Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
por: Song Weixing, et al.
Publicado: (2021) -
A Hybrid Model Based on LFM and BiGRU Toward Research Paper Recommendation
por: Xu Zhao, et al.
Publicado: (2020) -
A deep bidirectional recurrent neural network for identification of SARS-CoV-2 from viral genome sequences
por: Mohanad A. Deif, et al.
Publicado: (2021) -
End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks
por: Alexander E. Olsson, et al.
Publicado: (2021)