Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
The accuracy of a predictive system is critical for predictive maintenance and to support the right decisions at the right times. Statistical models, such as ARIMA and SARIMA, are unable to describe the stochastic nature of the data. Neural networks, such as long short-term memory (LSTM) and the gat...
Enregistré dans:
Auteurs principaux: | Balduíno César Mateus, Mateus Mendes, José Torres Farinha, Rui Assis, António Marques Cardoso |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7de9e1b39c8f490c82767493d3dc258e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Artificial Intelligence in Corporate Sustainability: Using LSTM and GRU for Going Concern Prediction
par: Der-Jang Chi, et autres
Publié: (2021) -
Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
par: Song Weixing, et autres
Publié: (2021) -
A Hybrid Model Based on LFM and BiGRU Toward Research Paper Recommendation
par: Xu Zhao, et autres
Publié: (2020) -
A deep bidirectional recurrent neural network for identification of SARS-CoV-2 from viral genome sequences
par: Mohanad A. Deif, et autres
Publié: (2021) -
End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks
par: Alexander E. Olsson, et autres
Publié: (2021)