Multi-domain translation between single-cell imaging and sequencing data using autoencoders
Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared laten...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7df126930d194ef68d3d6f0c6ad92f1f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7df126930d194ef68d3d6f0c6ad92f1f2021-12-02T11:45:56ZMulti-domain translation between single-cell imaging and sequencing data using autoencoders10.1038/s41467-020-20249-22041-1723https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20249-2https://doaj.org/toc/2041-1723Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared latent space.Karren Dai YangAnastasiya BelyaevaSaradha VenkatachalapathyKarthik DamodaranAbigail KatcoffAdityanarayanan RadhakrishnanG. V. ShivashankarCaroline UhlerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Karren Dai Yang Anastasiya Belyaeva Saradha Venkatachalapathy Karthik Damodaran Abigail Katcoff Adityanarayanan Radhakrishnan G. V. Shivashankar Caroline Uhler Multi-domain translation between single-cell imaging and sequencing data using autoencoders |
description |
Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared latent space. |
format |
article |
author |
Karren Dai Yang Anastasiya Belyaeva Saradha Venkatachalapathy Karthik Damodaran Abigail Katcoff Adityanarayanan Radhakrishnan G. V. Shivashankar Caroline Uhler |
author_facet |
Karren Dai Yang Anastasiya Belyaeva Saradha Venkatachalapathy Karthik Damodaran Abigail Katcoff Adityanarayanan Radhakrishnan G. V. Shivashankar Caroline Uhler |
author_sort |
Karren Dai Yang |
title |
Multi-domain translation between single-cell imaging and sequencing data using autoencoders |
title_short |
Multi-domain translation between single-cell imaging and sequencing data using autoencoders |
title_full |
Multi-domain translation between single-cell imaging and sequencing data using autoencoders |
title_fullStr |
Multi-domain translation between single-cell imaging and sequencing data using autoencoders |
title_full_unstemmed |
Multi-domain translation between single-cell imaging and sequencing data using autoencoders |
title_sort |
multi-domain translation between single-cell imaging and sequencing data using autoencoders |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f |
work_keys_str_mv |
AT karrendaiyang multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT anastasiyabelyaeva multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT saradhavenkatachalapathy multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT karthikdamodaran multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT abigailkatcoff multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT adityanarayananradhakrishnan multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT gvshivashankar multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders AT carolineuhler multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders |
_version_ |
1718395235680124928 |