Multi-domain translation between single-cell imaging and sequencing data using autoencoders

Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared laten...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Karren Dai Yang, Anastasiya Belyaeva, Saradha Venkatachalapathy, Karthik Damodaran, Abigail Katcoff, Adityanarayanan Radhakrishnan, G. V. Shivashankar, Caroline Uhler
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7df126930d194ef68d3d6f0c6ad92f1f
record_format dspace
spelling oai:doaj.org-article:7df126930d194ef68d3d6f0c6ad92f1f2021-12-02T11:45:56ZMulti-domain translation between single-cell imaging and sequencing data using autoencoders10.1038/s41467-020-20249-22041-1723https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20249-2https://doaj.org/toc/2041-1723Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared latent space.Karren Dai YangAnastasiya BelyaevaSaradha VenkatachalapathyKarthik DamodaranAbigail KatcoffAdityanarayanan RadhakrishnanG. V. ShivashankarCaroline UhlerNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Karren Dai Yang
Anastasiya Belyaeva
Saradha Venkatachalapathy
Karthik Damodaran
Abigail Katcoff
Adityanarayanan Radhakrishnan
G. V. Shivashankar
Caroline Uhler
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
description Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared latent space.
format article
author Karren Dai Yang
Anastasiya Belyaeva
Saradha Venkatachalapathy
Karthik Damodaran
Abigail Katcoff
Adityanarayanan Radhakrishnan
G. V. Shivashankar
Caroline Uhler
author_facet Karren Dai Yang
Anastasiya Belyaeva
Saradha Venkatachalapathy
Karthik Damodaran
Abigail Katcoff
Adityanarayanan Radhakrishnan
G. V. Shivashankar
Caroline Uhler
author_sort Karren Dai Yang
title Multi-domain translation between single-cell imaging and sequencing data using autoencoders
title_short Multi-domain translation between single-cell imaging and sequencing data using autoencoders
title_full Multi-domain translation between single-cell imaging and sequencing data using autoencoders
title_fullStr Multi-domain translation between single-cell imaging and sequencing data using autoencoders
title_full_unstemmed Multi-domain translation between single-cell imaging and sequencing data using autoencoders
title_sort multi-domain translation between single-cell imaging and sequencing data using autoencoders
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f
work_keys_str_mv AT karrendaiyang multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT anastasiyabelyaeva multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT saradhavenkatachalapathy multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT karthikdamodaran multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT abigailkatcoff multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT adityanarayananradhakrishnan multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT gvshivashankar multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
AT carolineuhler multidomaintranslationbetweensinglecellimagingandsequencingdatausingautoencoders
_version_ 1718395235680124928