Multi-domain translation between single-cell imaging and sequencing data using autoencoders
Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared laten...
Guardado en:
Autores principales: | Karren Dai Yang, Anastasiya Belyaeva, Saradha Venkatachalapathy, Karthik Damodaran, Abigail Katcoff, Adityanarayanan Radhakrishnan, G. V. Shivashankar, Caroline Uhler |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing
por: Anastasiya Belyaeva, et al.
Publicado: (2021) -
Single cell imaging-based chromatin biomarkers for tumor progression
por: Saradha Venkatachalapathy, et al.
Publicado: (2021) -
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
por: Muta Tah Hira, et al.
Publicado: (2021) -
Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers
por: Abdullah Al Mamun, et al.
Publicado: (2021) -
Author Correction: Integrated multi‑omics analysis of ovarian cancer using variational autoencoders
por: Muta Tah Hira, et al.
Publicado: (2021)