Multi-domain translation between single-cell imaging and sequencing data using autoencoders
Integration of single cell data modalities increases the richness of information about the heterogeneity of cell states, but integration of imaging and transcriptomics is an open challenge. Here the authors use autoencoders to learn a probabilistic coupling and map these modalities to a shared laten...
Enregistré dans:
Auteurs principaux: | Karren Dai Yang, Anastasiya Belyaeva, Saradha Venkatachalapathy, Karthik Damodaran, Abigail Katcoff, Adityanarayanan Radhakrishnan, G. V. Shivashankar, Caroline Uhler |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7df126930d194ef68d3d6f0c6ad92f1f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing
par: Anastasiya Belyaeva, et autres
Publié: (2021) -
Single cell imaging-based chromatin biomarkers for tumor progression
par: Saradha Venkatachalapathy, et autres
Publié: (2021) -
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
par: Muta Tah Hira, et autres
Publié: (2021) -
Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers
par: Abdullah Al Mamun, et autres
Publié: (2021) -
Author Correction: Integrated multi‑omics analysis of ovarian cancer using variational autoencoders
par: Muta Tah Hira, et autres
Publié: (2021)