Deep generative models for automated muscle segmentation in computed tomography scanning.
Accurate gluteus medius (GMd) volume evaluation may aid in the analysis of muscular atrophy states and help gain an improved understanding of patient recovery via rehabilitation. However, the segmentation of muscle regions in GMd images for cubic muscle volume assessment is time-consuming and labor-...
Guardado en:
Autores principales: | Daisuke Nishiyama, Hiroshi Iwasaki, Takaya Taniguchi, Daisuke Fukui, Manabu Yamanaka, Teiji Harada, Hiroshi Yamada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7dffd162dfd74a4294d4be45c3e2e508 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Feature selection to classify lameness using a smartphone-based inertial measurement unit.
por: Satoshi Arita, et al.
Publicado: (2021) -
Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions
por: Kenneth A. Weber, et al.
Publicado: (2021) -
Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net
por: Yuichi Wakamatsu, et al.
Publicado: (2021) -
Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
por: Mary Katherine Montgomery, et al.
Publicado: (2021) -
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans
por: C. A. Neves, et al.
Publicado: (2021)