Deep generative models for automated muscle segmentation in computed tomography scanning.
Accurate gluteus medius (GMd) volume evaluation may aid in the analysis of muscular atrophy states and help gain an improved understanding of patient recovery via rehabilitation. However, the segmentation of muscle regions in GMd images for cubic muscle volume assessment is time-consuming and labor-...
Enregistré dans:
Auteurs principaux: | Daisuke Nishiyama, Hiroshi Iwasaki, Takaya Taniguchi, Daisuke Fukui, Manabu Yamanaka, Teiji Harada, Hiroshi Yamada |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7dffd162dfd74a4294d4be45c3e2e508 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Feature selection to classify lameness using a smartphone-based inertial measurement unit.
par: Satoshi Arita, et autres
Publié: (2021) -
Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions
par: Kenneth A. Weber, et autres
Publié: (2021) -
Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net
par: Yuichi Wakamatsu, et autres
Publié: (2021) -
Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
par: Mary Katherine Montgomery, et autres
Publié: (2021) -
Fully automated preoperative segmentation of temporal bone structures from clinical CT scans
par: C. A. Neves, et autres
Publié: (2021)