TWO-WAY METRIC LEARNING WITH MAJORITY AND MINORITY SUBSETS FOR CLASSIFICATION OF LARGE EXTREMELY IMBALANCED FACE DATASET
This paper proposes a new learning methodology involving deep features and two-way metric learning for large, extremely imbalanced face datasets where the number of minority classes and the imbalance ratio are both very high. The problem arises because the faces of some celebrities, being more popul...
Guardado en:
Autores principales: | Ashu Kaushik, Seba Susan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Scientific Research Support Fund of Jordan (SRSF) and Princess Sumaya University for Technology (PSUT)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7e26b2cef55244e5a6807707f93b2e55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shuhao Shi, et al.
Publicado: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021) -
ANALYSIS OF METHODS FOR DETECTING FACES IN AN IMAGE
por: Zh. Sultanov
Publicado: (2021) -
ANALYZING THE IMPACT OF RESAMPLING METHOD FOR IMBALANCED DATA TEXT IN INDONESIAN SCIENTIFIC ARTICLES CATEGORIZATION
por: Ariani Indrawati, et al.
Publicado: (2020) -
Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
por: Giulia Varotto, et al.
Publicado: (2021)