DeepEva: A deep neural network architecture for assessing sentence complexity in Italian and English languages
Automatic Text Complexity Evaluation (ATE) is a research field that aims at creating new methodologies to make autonomous the process of the text complexity evaluation, that is the study of the text-linguistic features (e.g., lexical, syntactical, morphological) to measure the grade of comprehensibi...
Guardado en:
Autores principales: | Giosué Lo Bosco, Giovanni Pilato, Daniele Schicchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7e36055a1d474631b4ad6e3b116f8379 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computational Work with Very Large Text Collections
por: John Unsworth
Publicado: (2011) -
Digital Texts in Practice
por: Christian Wittern
Publicado: (2020) -
The Evolution of the Text Encoding Initiative: From Research Project to Research Infrastructure
por: Lou Burnard
Publicado: (2013) -
Materiality of TEI Encoding and Decoding: An Analysis of the Western European Union Archives on Armament Policy
por: Florentina Armaselu, et al.
Publicado: (2016) -
The CLiGS Textbox: Building and Using Collections of Literary Texts in Romance Languages Encoded in TEI XML
por: Christof Schöch, et al.
Publicado: (2019)