Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma

Early diagnosis significantly improves the probability of successful cancer therapy. Here, the authors develop a technique to analyse serum metabolites and define a biomarker panel for early-stage lung adenocarcinoma diagnosis.

Guardado en:
Detalles Bibliográficos
Autores principales: Lin Huang, Lin Wang, Xiaomeng Hu, Sen Chen, Yunwen Tao, Haiyang Su, Jing Yang, Wei Xu, Vadanasundari Vedarethinam, Shu Wu, Bin Liu, Xinze Wan, Jiatao Lou, Qian Wang, Kun Qian
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/7e618f992e38463d938f7eb7b11cb0cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7e618f992e38463d938f7eb7b11cb0cc
record_format dspace
spelling oai:doaj.org-article:7e618f992e38463d938f7eb7b11cb0cc2021-12-02T18:31:30ZMachine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma10.1038/s41467-020-17347-62041-1723https://doaj.org/article/7e618f992e38463d938f7eb7b11cb0cc2020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17347-6https://doaj.org/toc/2041-1723Early diagnosis significantly improves the probability of successful cancer therapy. Here, the authors develop a technique to analyse serum metabolites and define a biomarker panel for early-stage lung adenocarcinoma diagnosis.Lin HuangLin WangXiaomeng HuSen ChenYunwen TaoHaiyang SuJing YangWei XuVadanasundari VedarethinamShu WuBin LiuXinze WanJiatao LouQian WangKun QianNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lin Huang
Lin Wang
Xiaomeng Hu
Sen Chen
Yunwen Tao
Haiyang Su
Jing Yang
Wei Xu
Vadanasundari Vedarethinam
Shu Wu
Bin Liu
Xinze Wan
Jiatao Lou
Qian Wang
Kun Qian
Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
description Early diagnosis significantly improves the probability of successful cancer therapy. Here, the authors develop a technique to analyse serum metabolites and define a biomarker panel for early-stage lung adenocarcinoma diagnosis.
format article
author Lin Huang
Lin Wang
Xiaomeng Hu
Sen Chen
Yunwen Tao
Haiyang Su
Jing Yang
Wei Xu
Vadanasundari Vedarethinam
Shu Wu
Bin Liu
Xinze Wan
Jiatao Lou
Qian Wang
Kun Qian
author_facet Lin Huang
Lin Wang
Xiaomeng Hu
Sen Chen
Yunwen Tao
Haiyang Su
Jing Yang
Wei Xu
Vadanasundari Vedarethinam
Shu Wu
Bin Liu
Xinze Wan
Jiatao Lou
Qian Wang
Kun Qian
author_sort Lin Huang
title Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
title_short Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
title_full Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
title_fullStr Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
title_full_unstemmed Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
title_sort machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/7e618f992e38463d938f7eb7b11cb0cc
work_keys_str_mv AT linhuang machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT linwang machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT xiaomenghu machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT senchen machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT yunwentao machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT haiyangsu machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT jingyang machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT weixu machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT vadanasundarivedarethinam machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT shuwu machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT binliu machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT xinzewan machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT jiataolou machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT qianwang machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
AT kunqian machinelearningofserummetabolicpatternsencodesearlystagelungadenocarcinoma
_version_ 1718377987768844288