Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
Early diagnosis significantly improves the probability of successful cancer therapy. Here, the authors develop a technique to analyse serum metabolites and define a biomarker panel for early-stage lung adenocarcinoma diagnosis.
Enregistré dans:
Auteurs principaux: | Lin Huang, Lin Wang, Xiaomeng Hu, Sen Chen, Yunwen Tao, Haiyang Su, Jing Yang, Wei Xu, Vadanasundari Vedarethinam, Shu Wu, Bin Liu, Xinze Wan, Jiatao Lou, Qian Wang, Kun Qian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7e618f992e38463d938f7eb7b11cb0cc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Plasmonic silver nanoshells for drug and metabolite detection
par: Lin Huang, et autres
Publié: (2017) -
Diagnosis and prognosis of myocardial infarction on a plasmonic chip
par: Wei Xu, et autres
Publié: (2020) -
Tumor evolutionary trajectories during the acquisition of invasiveness in early stage lung adenocarcinoma
par: Siwei Wang, et autres
Publié: (2020) -
The Earliest Stage of Lung Adenocarcinoma:
the Pathological Diagnosis and Clinical Significance of Adenocarcinoma In Situ
par: Huikang XIE, et autres
Publié: (2021) -
Early-stage mucinous sweat gland adenocarcinoma of eyelid
par: Nizawa T, et autres
Publié: (2011)