Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma
Early diagnosis significantly improves the probability of successful cancer therapy. Here, the authors develop a technique to analyse serum metabolites and define a biomarker panel for early-stage lung adenocarcinoma diagnosis.
Guardado en:
Autores principales: | Lin Huang, Lin Wang, Xiaomeng Hu, Sen Chen, Yunwen Tao, Haiyang Su, Jing Yang, Wei Xu, Vadanasundari Vedarethinam, Shu Wu, Bin Liu, Xinze Wan, Jiatao Lou, Qian Wang, Kun Qian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7e618f992e38463d938f7eb7b11cb0cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Plasmonic silver nanoshells for drug and metabolite detection
por: Lin Huang, et al.
Publicado: (2017) -
Diagnosis and prognosis of myocardial infarction on a plasmonic chip
por: Wei Xu, et al.
Publicado: (2020) -
Tumor evolutionary trajectories during the acquisition of invasiveness in early stage lung adenocarcinoma
por: Siwei Wang, et al.
Publicado: (2020) -
The Earliest Stage of Lung Adenocarcinoma:
the Pathological Diagnosis and Clinical Significance of Adenocarcinoma In Situ
por: Huikang XIE, et al.
Publicado: (2021) -
Early-stage mucinous sweat gland adenocarcinoma of eyelid
por: Nizawa T, et al.
Publicado: (2011)