Electron g-factor in nanostructures: continuum media and atomistic approach

Abstract We report studies of $${\varvec{k}}$$ k -dependent Landé g-factor, performed by both continuous media approximation $${\varvec{k}}{\varvec{\cdot }}{\varvec{p}}$$ k · p method, and atomistic tight-binding $$\hbox {sp}^3\hbox {d}^5\hbox {s}^*$$ sp 3 d 5 s ∗ approach. We propose an effective,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Krzysztof Gawarecki, Michał Zieliński
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7e8337f5b9334b7f992aeed770be9c4f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7e8337f5b9334b7f992aeed770be9c4f
record_format dspace
spelling oai:doaj.org-article:7e8337f5b9334b7f992aeed770be9c4f2021-12-02T13:58:13ZElectron g-factor in nanostructures: continuum media and atomistic approach10.1038/s41598-020-79133-02045-2322https://doaj.org/article/7e8337f5b9334b7f992aeed770be9c4f2020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79133-0https://doaj.org/toc/2045-2322Abstract We report studies of $${\varvec{k}}$$ k -dependent Landé g-factor, performed by both continuous media approximation $${\varvec{k}}{\varvec{\cdot }}{\varvec{p}}$$ k · p method, and atomistic tight-binding $$\hbox {sp}^3\hbox {d}^5\hbox {s}^*$$ sp 3 d 5 s ∗ approach. We propose an effective, mesoscopic model for InAs that we are able to successfully compare with atomistic calculations, for both very small and very large nanostructures, with a number of atoms reaching over 60 million. Finally, for nanostructure dimensions corresponding to near-zero g-factor we report electron spin states anti-crossing as a function of system size, despite no shape-anisotropy nor strain effects included, and merely due to breaking of atomistic symmetry of cation/anion planes constituting the system.Krzysztof GawareckiMichał ZielińskiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Krzysztof Gawarecki
Michał Zieliński
Electron g-factor in nanostructures: continuum media and atomistic approach
description Abstract We report studies of $${\varvec{k}}$$ k -dependent Landé g-factor, performed by both continuous media approximation $${\varvec{k}}{\varvec{\cdot }}{\varvec{p}}$$ k · p method, and atomistic tight-binding $$\hbox {sp}^3\hbox {d}^5\hbox {s}^*$$ sp 3 d 5 s ∗ approach. We propose an effective, mesoscopic model for InAs that we are able to successfully compare with atomistic calculations, for both very small and very large nanostructures, with a number of atoms reaching over 60 million. Finally, for nanostructure dimensions corresponding to near-zero g-factor we report electron spin states anti-crossing as a function of system size, despite no shape-anisotropy nor strain effects included, and merely due to breaking of atomistic symmetry of cation/anion planes constituting the system.
format article
author Krzysztof Gawarecki
Michał Zieliński
author_facet Krzysztof Gawarecki
Michał Zieliński
author_sort Krzysztof Gawarecki
title Electron g-factor in nanostructures: continuum media and atomistic approach
title_short Electron g-factor in nanostructures: continuum media and atomistic approach
title_full Electron g-factor in nanostructures: continuum media and atomistic approach
title_fullStr Electron g-factor in nanostructures: continuum media and atomistic approach
title_full_unstemmed Electron g-factor in nanostructures: continuum media and atomistic approach
title_sort electron g-factor in nanostructures: continuum media and atomistic approach
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/7e8337f5b9334b7f992aeed770be9c4f
work_keys_str_mv AT krzysztofgawarecki electrongfactorinnanostructurescontinuummediaandatomisticapproach
AT michałzielinski electrongfactorinnanostructurescontinuummediaandatomisticapproach
_version_ 1718392208414998528