Minimum Message Length Inference of the Exponential Distribution with Type I Censoring
Data with censoring is common in many areas of science and the associated statistical models are generally estimated with the method of maximum likelihood combined with a model selection criterion such as Akaike’s information criterion. This manuscript demonstrates how the information theoretic mini...
Guardado en:
Autores principales: | Enes Makalic, Daniel Francis Schmidt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7e84639a565c42d8a823cd963433e248 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
Analysis for Xgamma Parameters of Life under Type-II Adaptive Progressively Hybrid Censoring with Applications in Engineering and Chemistry
por: Ahmed Elshahhat, et al.
Publicado: (2021) -
Mean path length invariance in wave-scattering beyond the diffusive regime
por: Matthieu Davy, et al.
Publicado: (2021) -
An Approach to Growth Delimitation of Straight Line Segment Classifiers Based on a Minimum Bounding Box
por: Rosario Medina-Rodríguez, et al.
Publicado: (2021) -
Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid
por: Anna Niggas, et al.
Publicado: (2021)