ASCOT identifies key regulators of neuronal subtype-specific splicing

The increasing amount of raw RNA-seq data calls for new computational methods to mine information. Here, the authors present ASCOT, a computational resource to identify splice variants in RNA-seq data, and apply it to splicing patterns in neurons and unique splicing patterns in rod photoreceptors.

Guardado en:
Detalles Bibliográficos
Autores principales: Jonathan P. Ling, Christopher Wilks, Rone Charles, Patrick J. Leavey, Devlina Ghosh, Lizhi Jiang, Clayton P. Santiago, Bo Pang, Anand Venkataraman, Brian S. Clark, Abhinav Nellore, Ben Langmead, Seth Blackshaw
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/7ea8584150d14155b401fb552d0229f2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The increasing amount of raw RNA-seq data calls for new computational methods to mine information. Here, the authors present ASCOT, a computational resource to identify splice variants in RNA-seq data, and apply it to splicing patterns in neurons and unique splicing patterns in rod photoreceptors.