Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level

Abstract Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertia...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ying Shen, Lin Chen, Meixiang Wang, Dandan Lin, Zhongjie Liang, Peiqing Song, Qing Yuan, Hua Tang, Weihua Li, Kangmin Duan, Baiyan Liu, Ge Zhao, Yiqiang Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7ebbf896e5934f6cb3c71d42c3319adf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7ebbf896e5934f6cb3c71d42c3319adf
record_format dspace
spelling oai:doaj.org-article:7ebbf896e5934f6cb3c71d42c3319adf2021-12-02T16:06:32ZFlagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level10.1038/s41598-017-01619-12045-2322https://doaj.org/article/7ebbf896e5934f6cb3c71d42c3319adf2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01619-1https://doaj.org/toc/2045-2322Abstract Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection.Ying ShenLin ChenMeixiang WangDandan LinZhongjie LiangPeiqing SongQing YuanHua TangWeihua LiKangmin DuanBaiyan LiuGe ZhaoYiqiang WangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ying Shen
Lin Chen
Meixiang Wang
Dandan Lin
Zhongjie Liang
Peiqing Song
Qing Yuan
Hua Tang
Weihua Li
Kangmin Duan
Baiyan Liu
Ge Zhao
Yiqiang Wang
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
description Abstract Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection.
format article
author Ying Shen
Lin Chen
Meixiang Wang
Dandan Lin
Zhongjie Liang
Peiqing Song
Qing Yuan
Hua Tang
Weihua Li
Kangmin Duan
Baiyan Liu
Ge Zhao
Yiqiang Wang
author_facet Ying Shen
Lin Chen
Meixiang Wang
Dandan Lin
Zhongjie Liang
Peiqing Song
Qing Yuan
Hua Tang
Weihua Li
Kangmin Duan
Baiyan Liu
Ge Zhao
Yiqiang Wang
author_sort Ying Shen
title Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
title_short Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
title_full Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
title_fullStr Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
title_full_unstemmed Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
title_sort flagellar hooks and hook protein flge participate in host microbe interactions at immunological level
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/7ebbf896e5934f6cb3c71d42c3319adf
work_keys_str_mv AT yingshen flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT linchen flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT meixiangwang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT dandanlin flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT zhongjieliang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT peiqingsong flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT qingyuan flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT huatang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT weihuali flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT kangminduan flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT baiyanliu flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT gezhao flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
AT yiqiangwang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel
_version_ 1718384971669831680