Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level
Abstract Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertia...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ebbf896e5934f6cb3c71d42c3319adf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7ebbf896e5934f6cb3c71d42c3319adf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7ebbf896e5934f6cb3c71d42c3319adf2021-12-02T16:06:32ZFlagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level10.1038/s41598-017-01619-12045-2322https://doaj.org/article/7ebbf896e5934f6cb3c71d42c3319adf2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01619-1https://doaj.org/toc/2045-2322Abstract Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection.Ying ShenLin ChenMeixiang WangDandan LinZhongjie LiangPeiqing SongQing YuanHua TangWeihua LiKangmin DuanBaiyan LiuGe ZhaoYiqiang WangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-14 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ying Shen Lin Chen Meixiang Wang Dandan Lin Zhongjie Liang Peiqing Song Qing Yuan Hua Tang Weihua Li Kangmin Duan Baiyan Liu Ge Zhao Yiqiang Wang Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level |
description |
Abstract Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection. |
format |
article |
author |
Ying Shen Lin Chen Meixiang Wang Dandan Lin Zhongjie Liang Peiqing Song Qing Yuan Hua Tang Weihua Li Kangmin Duan Baiyan Liu Ge Zhao Yiqiang Wang |
author_facet |
Ying Shen Lin Chen Meixiang Wang Dandan Lin Zhongjie Liang Peiqing Song Qing Yuan Hua Tang Weihua Li Kangmin Duan Baiyan Liu Ge Zhao Yiqiang Wang |
author_sort |
Ying Shen |
title |
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level |
title_short |
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level |
title_full |
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level |
title_fullStr |
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level |
title_full_unstemmed |
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level |
title_sort |
flagellar hooks and hook protein flge participate in host microbe interactions at immunological level |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/7ebbf896e5934f6cb3c71d42c3319adf |
work_keys_str_mv |
AT yingshen flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT linchen flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT meixiangwang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT dandanlin flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT zhongjieliang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT peiqingsong flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT qingyuan flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT huatang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT weihuali flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT kangminduan flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT baiyanliu flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT gezhao flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel AT yiqiangwang flagellarhooksandhookproteinflgeparticipateinhostmicrobeinteractionsatimmunologicallevel |
_version_ |
1718384971669831680 |