FRGAN: A Blind Face Restoration with Generative Adversarial Networks
Recent works based on deep learning and facial priors have performed well in superresolving severely degraded facial images. However, due to the limitation of illumination, pixels of the monitoring probe itself, focusing area, and human motion, the face image is usually blurred or even deformed. To...
Guardado en:
Autores principales: | Tongxin Wei, Qingbao Li, Zhifeng Chen, Jinjin Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ebc1be710db4890a41fd2491088c870 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Conditional Deep 3D-Convolutional Generative Adversarial Nets for RGB-D Generation
por: Richa Sharma, et al.
Publicado: (2021) -
Open Set Sheep Face Recognition Based on Euclidean Space Metric
por: Hongcheng Xue, et al.
Publicado: (2021) -
Robust and Blind Audio Watermarking Scheme Based on Genetic Algorithm in Dual Transform Domain
por: Qiuling Wu, et al.
Publicado: (2021) -
Image and Graph Restoration Dependent on Generative Adversarial Network Algorithm
por: Yuanhao Cao
Publicado: (2021) -
Odd Inverse Power Generalized Weibull Generated Family of Distributions: Properties and Applications
por: A.S. Al-Moisheer, et al.
Publicado: (2021)