Developing Reverse Order Law for the Moore–Penrose Inverse with the Product of Three Linear Operators
In this paper, we study the reverse order law for the Moore–Penrose inverse of the product of three bounded linear operators in Hilbert spaces. We first present some equivalent conditions for the existence of the reverse order law ABC†=C†B†A†. Moreover, several equivalent statements of ℛAA∗ABC=ℛABC...
Enregistré dans:
Auteurs principaux: | Yang Qi, Liu Xiaoji, Yu Yaoming |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7ecd1b2a961b480db7420aa7604fc1aa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
From Penrose Equations to Zhang Neural Network, Getz–Marsden Dynamic System, and DDD (Direct Derivative Dynamics) Using Substitution Technique
par: Dongqing Wu, et autres
Publié: (2021) -
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
par: Jorge J. Betancor, et autres
Publié: (2021) -
Forecasting the Cumulative Confirmed Cases with the FGM and Fractional-Order Buffer Operator in Different Stages of COVID-19
par: Yanhui Chen, et autres
Publié: (2021) -
Informational Measure of Symmetry vs. Voronoi Entropy and Continuous Measure of Entropy of the Penrose Tiling. Part II of the “Voronoi Entropy vs. Continuous Measure of Symmetry of the Penrose Tiling”
par: Edward Bormashenko, et autres
Publié: (2021) -
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
par: Edi Kurniadi, et autres
Publié: (2020)