Traffic Signal Optimization for Multiple Intersections Based on Reinforcement Learning

In order to deal with dynamic traffic flow, adaptive traffic signal controls using reinforcement learning are being studied. However, most of the related studies are difficult to apply to the real field considering only mathematical optimization. In this study, we propose a reinforcement learning-ba...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaun Gu, Minhyuck Lee, Chulmin Jun, Yohee Han, Youngchan Kim, Junwon Kim
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/7ed23d4e4a2b40009a8449538e8e862a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In order to deal with dynamic traffic flow, adaptive traffic signal controls using reinforcement learning are being studied. However, most of the related studies are difficult to apply to the real field considering only mathematical optimization. In this study, we propose a reinforcement learning-based signal optimization model with constraints. The proposed model maintains the sequence of typical signal phases and considers the minimum green time. The model was trained using Simulation of Urban MObility (SUMO), a microscopic traffic simulator. The model was evaluated in the virtual environment similar to a real road with multiple intersections connected. The performance of the proposed model was analyzed by comparing the delay and number of stops with a reinforcement learning model that did not consider constraints and a fixed-time model. In a peak hour, the proposed model reduced the delay from 3 min 15 s to 2 min 15 s and the number of stops from 11 to 4.7 compared to the fixed-time model.