W-representations of the fermionic matrix and Aristotelian tensor models
We show that the fermionic matrix model can be realized by W-representation. We construct the Virasoro constraints with higher algebraic structures, where the constraint operators obey the Witt algebra and null 3-algebra. The remarkable feature is that the character expansion of the partition functi...
Enregistré dans:
| Auteurs principaux: | , , , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Elsevier
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/7ed27143b08b42f8aa858c7351f3ba55 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
| id |
oai:doaj.org-article:7ed27143b08b42f8aa858c7351f3ba55 |
|---|---|
| record_format |
dspace |
| spelling |
oai:doaj.org-article:7ed27143b08b42f8aa858c7351f3ba552021-12-04T04:33:01ZW-representations of the fermionic matrix and Aristotelian tensor models0550-321310.1016/j.nuclphysb.2021.115612https://doaj.org/article/7ed27143b08b42f8aa858c7351f3ba552021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0550321321003096https://doaj.org/toc/0550-3213We show that the fermionic matrix model can be realized by W-representation. We construct the Virasoro constraints with higher algebraic structures, where the constraint operators obey the Witt algebra and null 3-algebra. The remarkable feature is that the character expansion of the partition function can be easily derived from such Virasoro constraints. It is a τ-function of the KP hierarchy. We construct the fermionic Aristotelian tensor model and give its W-representation. Moreover, we analyze the fermionic red tensor model and present the W-representation and character expansion of the partition function.Lu-Yao WangRui WangKe WuWei-Zhong ZhaoElsevierarticleNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENNuclear Physics B, Vol 973, Iss , Pp 115612- (2021) |
| institution |
DOAJ |
| collection |
DOAJ |
| language |
EN |
| topic |
Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 |
| spellingShingle |
Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 Lu-Yao Wang Rui Wang Ke Wu Wei-Zhong Zhao W-representations of the fermionic matrix and Aristotelian tensor models |
| description |
We show that the fermionic matrix model can be realized by W-representation. We construct the Virasoro constraints with higher algebraic structures, where the constraint operators obey the Witt algebra and null 3-algebra. The remarkable feature is that the character expansion of the partition function can be easily derived from such Virasoro constraints. It is a τ-function of the KP hierarchy. We construct the fermionic Aristotelian tensor model and give its W-representation. Moreover, we analyze the fermionic red tensor model and present the W-representation and character expansion of the partition function. |
| format |
article |
| author |
Lu-Yao Wang Rui Wang Ke Wu Wei-Zhong Zhao |
| author_facet |
Lu-Yao Wang Rui Wang Ke Wu Wei-Zhong Zhao |
| author_sort |
Lu-Yao Wang |
| title |
W-representations of the fermionic matrix and Aristotelian tensor models |
| title_short |
W-representations of the fermionic matrix and Aristotelian tensor models |
| title_full |
W-representations of the fermionic matrix and Aristotelian tensor models |
| title_fullStr |
W-representations of the fermionic matrix and Aristotelian tensor models |
| title_full_unstemmed |
W-representations of the fermionic matrix and Aristotelian tensor models |
| title_sort |
w-representations of the fermionic matrix and aristotelian tensor models |
| publisher |
Elsevier |
| publishDate |
2021 |
| url |
https://doaj.org/article/7ed27143b08b42f8aa858c7351f3ba55 |
| work_keys_str_mv |
AT luyaowang wrepresentationsofthefermionicmatrixandaristoteliantensormodels AT ruiwang wrepresentationsofthefermionicmatrixandaristoteliantensormodels AT kewu wrepresentationsofthefermionicmatrixandaristoteliantensormodels AT weizhongzhao wrepresentationsofthefermionicmatrixandaristoteliantensormodels |
| _version_ |
1718373040736174080 |