Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents
Cheng-Hung Lee,1,2 Chia-Ying Yu,2 Shang-Hung Chang,1 Kuo-Chun Hung,1 Shih-Jung Liu,2 Chao-Jan Wang,3 Ming-Yi Hsu,3 I-Chang Hsieh,1 Wei-Jan Chen,1 Yu-Shien Ko,1 Ming-Shien Wen1 1Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Tao-Yuan, Taiwan; 2Departme...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7ed5b55fd56746719513523c386992e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7ed5b55fd56746719513523c386992e9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7ed5b55fd56746719513523c386992e92021-12-02T01:04:57ZPromoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents1178-2013https://doaj.org/article/7ed5b55fd56746719513523c386992e92014-08-01T00:00:00Zhttp://www.dovepress.com/promoting-endothelial-recovery-and-reducing-neointimal-hyperplasia-usi-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Cheng-Hung Lee,1,2 Chia-Ying Yu,2 Shang-Hung Chang,1 Kuo-Chun Hung,1 Shih-Jung Liu,2 Chao-Jan Wang,3 Ming-Yi Hsu,3 I-Chang Hsieh,1 Wei-Jan Chen,1 Yu-Shien Ko,1 Ming-Shien Wen1 1Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Tao-Yuan, Taiwan; 2Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; 3Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan Introduction: This work reports on the development of a biodegradable dual-drug-eluting stent with sequential-like and sustainable drug-release of anti-platelet acetylsalicylic acid and anti-smooth muscle cell (SMC) proliferative paclitaxel.Methods: To fabricate the biodegradable stents, poly-L-lactide strips are first cut from a solvent-casted film. They are rolled onto the surface of a metal pin to form spiral stents. The stents are then consecutively covered by acetylsalicylic acid and paclitaxel-loaded polylactide-polyglycolide nanofibers via electrospinning.Results: Biodegradable stents exhibit mechanical properties that are superior to those of metallic stents. Biodegradable stents sequentially release high concentrations of acetylsalicylic acid and paclitaxel for more than 30 and 60 days, respectively. In vitro, the eluted drugs promote endothelial cell numbers on days 3 and 7, and reduce the proliferation of SMCs in weeks 2, 4, and 8. The stents markedly inhibit the adhesion of platelets on days 3, 7, and 14 relative to a non-drug-eluting stent. In vivo, the implanted stent is intact, and no stent thrombosis is observed in the stent-implanted vessels without the administration of daily oral acetylsalicylic acid. Promotion of endothelial recovery and inhibition of neointimal hyperplasia are also observed on the stented vessels.Conclusion: The work demonstrates the efficiency and safety of the biodegradable dual-drug-eluting stents with sequential and sustainable drug release to diseased arteries. Keywords: sequential-like and sustainable release, biodegradable drug-eluting stents, poly-L-lactide, polylactide-polyglycolide, mechanical properties Lee CHYu CYChang SHHung KCLiu SJWang CJHsu MYHsieh ICChen WJKo YSWen MSDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 4117-4133 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Lee CH Yu CY Chang SH Hung KC Liu SJ Wang CJ Hsu MY Hsieh IC Chen WJ Ko YS Wen MS Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
description |
Cheng-Hung Lee,1,2 Chia-Ying Yu,2 Shang-Hung Chang,1 Kuo-Chun Hung,1 Shih-Jung Liu,2 Chao-Jan Wang,3 Ming-Yi Hsu,3 I-Chang Hsieh,1 Wei-Jan Chen,1 Yu-Shien Ko,1 Ming-Shien Wen1 1Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Tao-Yuan, Taiwan; 2Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; 3Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan Introduction: This work reports on the development of a biodegradable dual-drug-eluting stent with sequential-like and sustainable drug-release of anti-platelet acetylsalicylic acid and anti-smooth muscle cell (SMC) proliferative paclitaxel.Methods: To fabricate the biodegradable stents, poly-L-lactide strips are first cut from a solvent-casted film. They are rolled onto the surface of a metal pin to form spiral stents. The stents are then consecutively covered by acetylsalicylic acid and paclitaxel-loaded polylactide-polyglycolide nanofibers via electrospinning.Results: Biodegradable stents exhibit mechanical properties that are superior to those of metallic stents. Biodegradable stents sequentially release high concentrations of acetylsalicylic acid and paclitaxel for more than 30 and 60 days, respectively. In vitro, the eluted drugs promote endothelial cell numbers on days 3 and 7, and reduce the proliferation of SMCs in weeks 2, 4, and 8. The stents markedly inhibit the adhesion of platelets on days 3, 7, and 14 relative to a non-drug-eluting stent. In vivo, the implanted stent is intact, and no stent thrombosis is observed in the stent-implanted vessels without the administration of daily oral acetylsalicylic acid. Promotion of endothelial recovery and inhibition of neointimal hyperplasia are also observed on the stented vessels.Conclusion: The work demonstrates the efficiency and safety of the biodegradable dual-drug-eluting stents with sequential and sustainable drug release to diseased arteries. Keywords: sequential-like and sustainable release, biodegradable drug-eluting stents, poly-L-lactide, polylactide-polyglycolide, mechanical properties |
format |
article |
author |
Lee CH Yu CY Chang SH Hung KC Liu SJ Wang CJ Hsu MY Hsieh IC Chen WJ Ko YS Wen MS |
author_facet |
Lee CH Yu CY Chang SH Hung KC Liu SJ Wang CJ Hsu MY Hsieh IC Chen WJ Ko YS Wen MS |
author_sort |
Lee CH |
title |
Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
title_short |
Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
title_full |
Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
title_fullStr |
Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
title_full_unstemmed |
Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
title_sort |
promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents |
publisher |
Dove Medical Press |
publishDate |
2014 |
url |
https://doaj.org/article/7ed5b55fd56746719513523c386992e9 |
work_keys_str_mv |
AT leech promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT yucy promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT changsh promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT hungkc promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT liusj promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT wangcj promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT hsumy promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT hsiehic promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT chenwj promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT koys promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents AT wenms promotingendothelialrecoveryandreducingneointimalhyperplasiausingsequentiallikereleaseofacetylsalicylicacidandpaclitaxelloadedbiodegradablestents |
_version_ |
1718403325593911296 |